

Cross-domain Speech Recognition with Unsupervised Character-level Distribution Matching

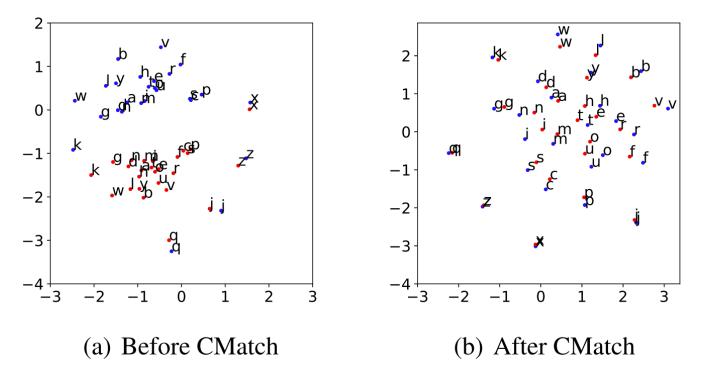
Wenxin Hou¹, Jindong Wang², Xu Tan², Tao Qin², Takahiro Shinozaki¹ ¹ Tokyo Institute of Technology ² Microsoft Research Asia

Introduction

- · Background
 - Distribution mismatch leads to deterioration in automatic speech recognition (ASR)
 - Example: cross-device, cross-environment ASR
 - · It is expensive and time-consuming to collect labeled speech data from massive domains (distributions)
- Unsupervised Domain Adaptation (UDA)
 - Existing methods
 - Data augmentation + representation matching
 - · Self-training with pseudo-label filtering approach based on the model's uncertainty using dropout
 - · Domain-adversarial training
 - Limitation
 - · Ignoring the fine-grained knowledge (characters, phoneme, and word) may result in unsatisfying results

CMatch

- · Character-level distribution matching
 - $\cdot P(y|X)$
 - Why not word or utterance matching?
 - $\cdot\;$ Word or utterance are highly sparse
 - $\cdot\,$ No segmentation ground-truth in end-to-end ASR models



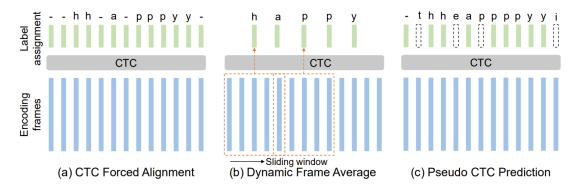
Preliminary

· CTC-Attention Transformer ASR Model

- · Input: 83-dimensional filter banks with pitch features (10 ms frame shift, 25 ms frame length)
- Network Structure:
 - 12 encoder Layers (self-attention, feed-forward)
 - · CTC module: output CTC predictions
 - · 6 decoder layers (self-attention, cross-attention, feed-forward)
- Training: $\mathcal{L}_{ASR} = (1 \lambda)\mathcal{L}_{ATT} + \lambda \mathcal{L}_{CTC}$
- Decoding: $\hat{Y} = \arg \max_{Y \in \mathcal{Y}} (1-\lambda) \log P_{\text{ATT}}(Y|X) + \lambda \log P_{\text{CTC}}(Y|X)$

CMatch: Character-level Distribution Matching

• Frame-level Label Assignment



- · CTC forced alignment
 - Take the labels from the most probable path selected by CTC forward-backward algorithm as the frame-level assignment
 - Effective but computationally expensive

Dynamic Frame Average

- · Assign frames for each character by sliding window averaging
- \cdot Work in a strict condition that the character output is a uniform distribution
- Pseudo CTC Prediction
 - \cdot CTC model naturally predicts the label assignment frame by frame which can be directly utilized
 - Filter out the CTC predictions with a threshold 0.9 based on their softmax scores to improve the accuracy

$$\hat{Y}_n = \arg\max_{Y_n} P_{\text{CTC}}(Y_n | X_n), \quad 1 \le n \le N$$

Distribution Matching

- Maximum Mean Discrepancy (MMD)
 - · MMD is a non-parametric criterion to empirically evaluate the divergence between two distribution
 - Formulation:

$$\mathsf{MMD}(\mathcal{H}_k, P, Q) = \sup_{||\phi||_{\mathcal{H}_k \leq 1}} \mathbb{E}_{X_S \sim P} \phi(X_S) - \mathbb{E}_{X_T \sim Q} \phi(X_T)$$

• Biased empirical estimate:

$$\operatorname{MMD}(\mathcal{H}_k, X_S, X_T) = \sup_{\||\phi\||_{\mathcal{H}_k \leq 1}} \left(\frac{1}{|X_S|} \sum_{x_s \in X_S} \phi(x_s) - \frac{1}{|X_T|} \sum_{x_t \in X_T} \phi(x_t) \right)$$

· Character-level Distribution Matching Loss

$$\mathcal{L}_{\text{cmatch}} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \text{MMD}(\mathcal{H}_k, X_S^c, X_T^c)$$

Learning Algorithm

 \cdot Overall Loss

$$\mathcal{L} = rac{1}{2} \left(\mathcal{L}_{\mathrm{ASR}}^{\mathrm{src}} + \mathcal{L}_{\mathrm{ASR}}^{\mathrm{tgt}}
ight) + \gamma \mathcal{L}_{\mathrm{cmatch}}$$

• Learning algorithm

Algorithm 1 Learning algorithm of CMatch

Input: Source domain (X_S, Y_S) , target domain X_T .

- 1: Train network M_S on source domain (X_S, Y_S) .
- 2: Obtain pseudo label \hat{Y}_T with M_S .
- 3: while not done do
- 4: Obtain the frame-level labels.
- 5: Joint optimization using the overall loss
- 6: end while

7: return Adapted model $M_{S \to T}$ and target transcripts.

Experimental Setup

- · Dataset: Libri-Adapt
 - Cross-device: Matrix Voice (M), PlayStation Eye (P), and ReSpeaker (R)
 - · Cross-environment: clean, rain, wind, laughter
 - Number of utterances (hours)
 - Training: 25685 (93.77)
 - · Validation: 2854 (10.71)
 - Testing: 2600 (5.60)

\cdot Baselines

- · Source-only
- · MMD-ASR
- Domain Adversarial Training (ADV)

Cross-domain Adaptation Results

· In-domain

Domain	WER
Matrix Voice (M)	24.25
PlayStation Eye (P)	20.07
ReSpeaker (R)	23.78
Average	22.70

• Device Adaptation

Task	Source-only	MMD	ADV	CMatch
$M \rightarrow P$	23.87	20.87	21.11	20.38
$M \to R$	25.21	22.21	22.27	21.77
$\mathbf{P} \to \mathbf{M}$	31.15	27.22	28.29	26.17
$\textbf{P} \rightarrow \textbf{R}$	23.99	21.90	21.74	20.43
$R \to M$	32.45	28.27	29.95	27.77
$R \to P$	23.48	21.09	21.23	20.58
Average	26.69	23.59	24.10	22.85

• Noise Adaptation

Target	Source-only	MMD	ADV	CMatch
Rain	38.21	33.61	34.65	32.90
Wind	29.70	26.06	26.73	23.12
Laughter	33.36	29.85	30.41	28.55
Average	33.76	29.84	30.60	28.19

14.39% improvement

16.50% improvement

Additional Experiments

- Ablation Study
 - · Both self-training and distribution matching are effective

Device	Noise
26.69	33.76
22.99	28.31
23.87	30.43
22.85	28.19
	26.69 22.99 23.87

- Analyzing the Label Assignment
 - Our pseudo method can be efficient and effective
- · Adapting with Decoder
 - · Decoder adaptation is not necessary

Task	PseudoCTCPred	FrameAverage	CTCAlign
$M \rightarrow P$	20.38	20.21	20.23
$\mathbf{M} \to \mathbf{R}$	21.77	21.80	21.75
$\mathbf{P} \to \mathbf{M}$	26.17	26.02	25.84
$\mathbf{P} \to \mathbf{R}$	20.43	20.36	20.44
$R \to M$	27.77	27.94	27.73
$\mathbf{R} \to \mathbf{P}$	20.58	20.55	20.52
Average	22.85	22.81	22.75

Target	w/o decoder	first	last	all
Rain	32.90	32.92	32.85	33.12
Wind	23.12	23.18	23.18	23.28
Laughter	28.55	28.66	28.56	28.63
Average	28.19	28.25	28.20	28.34

Summary

 We propose CMatch to match the character-level distributions from the source and target domain

 We empirically analyze the contribution of Transformer encoders and decoders as well as different label assignment strategies

 CMatch outperforms existing approaches on both device and noise adaptation tasks by leveraging the fine-grained information

Q & A