

Meta-Adapter: Efficient Cross-lingual Adaptation with Meta-learning

Wenxin Hou, Yidong Wang, Shengzhou Gao, Takahiro Shinozaki Tokyo Institute of Technology IEEE ICASSP 2021

Background

- Low-resource automatic speech recognition (ASR) is a challenge for datahungry end-to-end (E2E) models
- Cross-lingual ASR: adapt or extend a pre-trained multilingual model to a new unseen language

Conventional Methods

• Multilingual Joint Pre-training

- Pre-train the ASR model on multiple languages
- Fine-tune the pre-trained model on the target language

X Catastrophic forgetting X Low parameter-efficiency X Overfitting problem

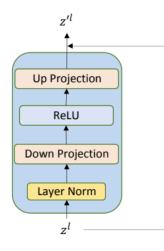
• Multilingual Meta Pre-training

- Pre-train the ASR model using Model-Agnostic Meta-Learning (MAML) on multiple languages
- Fine-tune the pre-trained model on the target language

X Catastrophic forgetting X Low parameter-efficiency X High computational cost

Proposed Method

• Introduce Adapter [Bapna+, EMNLP-IJCNLP, 2019] module to improve parameter-efficiency



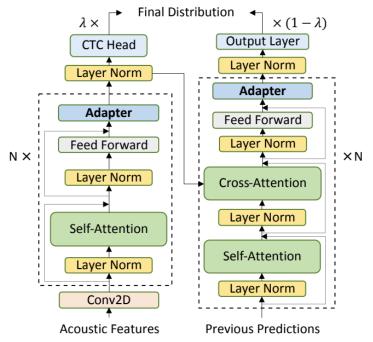
Adapter(
$$\mathbf{z}^{l}$$
) = \mathbf{z}^{l} + \mathbf{W}_{u}^{l} ReLU (\mathbf{W}_{d}^{l} (LayerNorm (\mathbf{z}^{l})))

- Introduce meta-learning for fast adaptation
 - MAML [Finn+, ICML, 2017]

$$\mathcal{L}_{S_i^{val}}(f_{\theta_{a,i}'}) = \mathcal{L}_{S_i^{val}}(f_{\theta_a - \epsilon \nabla_{\theta_a} \mathcal{L}_{S_i^{tra}}(f_{\theta_a})})$$

• Reptile [Nichol+, arXiv, 2018]

$$\theta_{a,i_{k+1}} = \theta_{a,i_k} - \epsilon \nabla \mathcal{L}_{D_i}(f_{\theta_{a,i_k}})$$



$$\theta_a = \theta_a - \gamma \sum_{S_i^{val} \sim p(S^{val})} \nabla_{\theta_a} \mathcal{L}_{S_i^{val}}(f_{\theta'_{a,i}})$$

$$\theta_a = \theta_a + \gamma \sum_{S_i \sim p(S)} (\theta_{a,i_K} - \theta_a)$$

Experimental Setup

- Dataset: Common Voice Corpus 5.1 [Ardila+, LREC, 2020]
- Data amount:

Lang.	Train Dur.(hrs)	#Train Utt.	#Test Utt.
or	0.45	319	84
hsb	1.48	808	379
br	2.84	3684	1953
ga-IE	2.10	2338	497
ro	3.04	2789	1372

- Baselines
 - Head-FT: fine-tune the language-specific heads only
 - Vanilla-Adapter: inject and train the adapters with random initialization
 - MOL-Adapter: pre-train the adapters on multiple source languages as initialization
- Metric: Word error rate (WER)

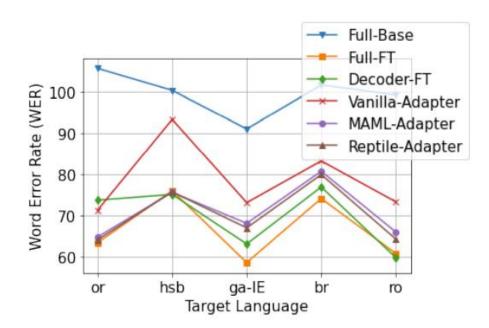
Results

• Quantitative Analysis

Method	or	hsb	ga-IE	br	ro
Head-FT	95.1	100.5	82.6	91.8	86.4
Vanilla-Adapter	71.3	93.3	73.1	83.2	73.3
MOL-Adapter	77.3	89.7	68.2	82.2	67.5
MAML-Adapter	64.8	75.6	68.1	80.7	66.0
Reptile-Adapter	64.1	75.7	67.0	79.9	64.3

• Impact of Trainable Parameters

Method	#Parameters		
Full-Base & Full-FT	27,235K		
Decoder-FT	9,550K		
Adapters	381K		



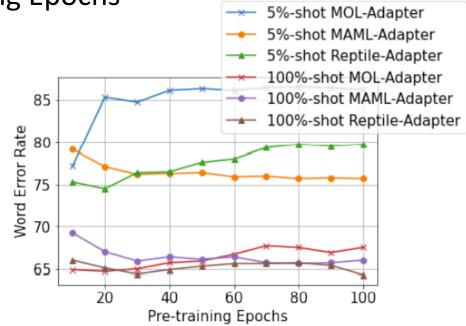
Additional Experiments

• Impact of Adaptation Data Size

Method	5%	10%	15%	30%	100%
Decoder-FT	87.9	70.5	64.7	60.7	59.8
Full-FT	77.3	73.2	67.8	65.7	60.8
Vanilla-Adapter	84.2	78.3	76.7	73.9	73.3
MOL-Adapter	86.2	78.4	72.6	69.1	67.5
MAML-Adapter	75.7	69.9	66.8	65.1	66.0
Reptile-Adapter	79.7	71.0	67.9	65.2	64.3

<u>Meta-Adapters are more robust to</u> <u>the adaptation data size</u>

• Impact of Pre-training Epochs



MAML and Reptile hardly overfit

Summary

- Combining meta-learning and adapters can result in fast and parameter-efficient cross-lingual adaptation for E2E ASR
- Meta-adapters achieve significant improvement compared with other parameter-efficient methods
- Future work aims to close the gap between parameter-efficient methods and full-model fine-tuning