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Introduction | End-to-End (E2E) Multilingual Automatic Speech Recognition (ASR)01

• Background

1. A single multilingual model saves efforts on deploying and maintaining in real-world application

2. A pretrained multilingual ASR model can benefit low-resource scenarios

3. End-to-end ASR on a large number of languages and large amount of data is rarely explored so far

• Motivation

1. Investigate into very large-scale multilingual ASR with automatic language identification based on 

hybrid CTC/Attention Transformer architecture

2. Discuss the transfer learning performance to low-resource languages with the pre-trained model
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Introduction | Related Works01

• Watanabe et al. [1] first proposed the E2E language-independent architecture for joint ASR and 

language identification(LID) with Hybrid CTC/Attention architecture on 10 languages

• Cho et al. [2] showed that transfer learning from 10 languages could improve performance on 4 

low-resource languages

[1] Watanabe, et al, “Language independent end-to-end architecture for joint language identification and speech recognition”, ASRU 2017, pp. 265–271
[2] J. Cho, et al, “Multilingual sequence-to-sequence speech recognition: architecture, transfer learning, and language modeling”, IEEE SLT 2018, pp. 521–527
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Methodology | Hybrid CTC/Attention Architecture Based on Transformer02
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Methodology | Hybrid CTC/Attention & Language Independent Architecture02

• Hybrid CTC/Attention Architecture

1. Multi-Task Learning:

2. Joint Decoding:

• Language-Independent Architecture

1. Share modeling units (characters, subwords) of all languages in one vocabulary

2. Prepend corresponding language IDs (e.g. [en]) to the beginning of utterance labels
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Experiments | Experimental Setup03

• Data Set

• 42 languages, 5000 hours, 6 million utterances from 11 corpora

• 14 low-resource languages from Common Voice database

• Modeling Units: 7,381 characters (Char.) / 15,943 subwords (SubW.) + 60 non-language symbols

• Evaluation Metrics: 

• Character Error Rate (CER)

• Word Error Rate (WER)

• Language Identification (LID) Accuracy
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03 Experiments | 42 Language Training Data
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Experiments | 14 Low-resource Language Data03

• Randomly split 80% utterances for training and 20% for testing
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Experiments | Transfer to Low-resource Languages03

• Fine-tune the network by replacing output layers of CTC & Transformer decoder

• Compare transfer performance under language specific & independent settings

Multilingual Training

Monolingual Training

14 target languages

Arabic

Breton

Slovenian

…

42 source languages

Pre-trained Multilingual 
Model

Randomly-initialized Model

42 source languages

Pre-trained Multilingual 
Model

Randomly-initialized Model

• Language-specific Baseline: 

• Language-independent Transfer:

• Language-specific Transfer:

• Language-independent Baseline: 

14 language-specific ASR systems

A multilingual ASR system
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Experiments | ASR Results (CER&LID) on 42 Languages03
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Experiments | ASR Results (WER) on 14 Low-resource Languages03
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Experiments | Transfer Results under Language-Specific Setting03

• Language-specific baseline (blue)

1. Relatively high WER due to lack of training data

2. WER goes beyond 100% on Interlingua, Chuvash & Kinyarwanda (all <= 1 hour)

3. 24.9% on Esperanto (35 hours)
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Experiments | Transfer Results under Language-Specific Setting03

• Language-specific transfer (red)

1. Most languages witness a significant drop in WER, indicating the effectiveness of pre-training

2. However, WER conversely increases on Kinyarwanda due to extremely low resource (0.25 hours)

3. Weighted average WER is reduced by 28.1% compared with language-specific baseline
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Experiments | Transfer Results under Language-Independent Setting03

• Language-independent baseline (grey)

1. Significant reduction in WER compared with language-specific baselines
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Experiments | Transfer Results under Language-Independent Setting03

• Language-independent transfer (yellow)

1. WER stably decreases on all languages, including Kinyarwanda

2. Side effects may occur (e.g. Arabic), resulting in slightly worse performance compared with 

language-specific transfer

3. Weighted average WER is reduced by 11.4% compared with language-independent baseline
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Conclusions04

• The presented large-scale multilingual model trained on 42 languages shows promising results in 

terms of average CER

• WER performances on low-resource languages can be greatly improved by applying large-scale 

multilingual pre-training

• Future work includes investigating into

1. Leveraging linguistic similarities between languages to further improve multilingual ASR and LID

2. Efficient data sampling methods to handle data imbalance problem
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