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Introduction | End-to-End (E2E) Multilingual Automatic Speech Recognition (ASR)

- Background
1. A single multilingual model saves efforts on deploying and maintaining in real-world application
2. A pretrained multilingual ASR model can benefit low-resource scenarios

3. End-to-end ASR on a large number of languages and large amount of data is rarely explored so far

« Motivation
1. Investigate into very large-scale multilingual ASR with automatic language identification based on
hybrid CTC/Attention Transformer architecture

2. Discuss the transfer learning performance to low-resource languages with the pre-trained model



Introduction | Related Works

« Watanabe et al. [1] first proposed the E2E language-independent architecture for joint ASR and
language identification(LID) with Hybrid CTC/Attention architecture on 10 languages

Augmented character set:
Language ID Latin Hiragana Cyrillic

D S C—

[EN]J[JP] ... e0s ABCDEFGHIJKLMNOPQRSTUVWXYZHLVIZ .. L..& .. AAB..A ........

Hybrid Attention/CTC
Xt ={xf, ....x}} X2 ={(x%,...,x%)
(English utterance) Japanese utterance

« Cho et al. [2] showed that transfer learning from 10 languages could improve performance on 4

low-resource languages

[1] Watanabe, et al, “Language independent end-to-end architecture for joint language identification and speech recognition”, ASRU 2017, pp. 265271
[2] J. Cho, et al, “Multilingual sequence-to-sequence speech recognition: architecture, transfer learning, and language modeling”, IEEE SLT 2018, pp. 521-527



Methodology | Hybrid CTC/Attention Architecture Based on Transformer
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Methodology | Hybrid CTC/Attention & Language Independent Architecture

« Hybrid CTC/Attention Architecture
1.  Multi-Task Learning:
L = ol + (1 - le)ﬁutt

2. Joint Decoding:

Cat

Y = argmax{\log Puc(Y|X)+(1—X\)log Pu(Y|X)}
YelV
« Language-Independent Architecture

1. Share modeling units (characters, subwords) of all languages in one vocabulary

2. Prepend corresponding language IDs (e.g. [en]) to the beginning of utterance labels



Experiments | Experimental Setup

 Data Set

« 42 languages, 5000 hours, 6 million utterances from 11 corpora
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« 14 low-resource languages from Common Voice database
« Modeling Units: 7,381 characters (Char.) / 15,943 subwords (SubW.) + 60 non-language symbols
« Evaluation Metrics:

« Character Error Rate (CER)

« Word Error Rate (WER)

« Language ldentification (LID) Accuracy



Experiments | 42 Language Training Data
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Experiments | 14 Low-resource Language Data

« Randomly split 80% utterances for training and 20% for testing
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Experiments | Transfer to Low-resource Languages

« Fine-tune the network by replacing output layers of CTC & Transformer decoder

« Compare transfer performance under language specific & independent settings

Language-specific Baseline: »
14 language-specific ASR systems

[ Randomly-initialized Model

Arabic
« Language-specific Transfer: Monolingual Training Breton
[ Pre-trained Multilingual
Model ,
5 Slovenian
42 source languages
« Language-independent Baseline:
[ Randomly-initialized Model A multilingual ASR system
« Language-independent Transfer: Multilingual Training ]——» 14 target languages
Pre-trained Multilingual
Model
*

(\o)

42 source languages



Experiments | ASR Results (CER&LID) on 42 Languages
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Experiments | ASR Results (WER) on 14 Low-resource Languages
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Experiments | Transfer Results under Language-Specific Setting

« Language-specific baseline (blue)
1. Relatively high WER due to lack of training data
2. WER goes beyond 100% on Interlingua, Chuvash & Kinyarwanda (all <=1 hour)

3. 24.9% on Esperanto (35 hours)
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Experiments | Transfer Results under Language-Specific Setting

- Language-specific transfer (red)
1. Most languages witness a significant drop in WER, indicating the effectiveness of pre-training
2. However, WER conversely increases on Kinyarwanda due to extremely low resource (0.25 hours)

3. Weighted average WER is reduced by 28.1% compared with language-specific baseline
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Experiments | Transfer Results under Language-Independent Setting

« Language-independent baseline (grey)

1. Significant reduction in WER compared with language-specific baselines
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Experiments | Transfer Results under Language-Independent Setting

- Language-independent transfer (yellow)
1. WER stably decreases on all languages, including Kinyarwanda
2. Side effects may occur (e.g. Arabic), resulting in slightly worse performance compared with
language-specific transfer

3. Weighted average WER is reduced by 11.4% compared with language-independent baseline
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Conclusions

The presented large-scale multilingual model trained on 42 languages shows promising results in

terms of average CER

WER performances on low-resource languages can be greatly improved by applying large-scale

multilingual pre-training

Future work includes investigating into

1. Leveraging linguistic similarities between languages to further improve multilingual ASR and LID

2. Efficient data sampling methods to handle data imbalance problem
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Thank you for watching !

Presenter: Wenxin Hou



