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Abstract
The process of spoken language acquisition based on sound-
image grounding has been one of the topics that has attracted
the most significant interest of linguists and human scientists
for decades. To understand the process and enable new pos-
sibilities for intelligent robots, we designed a spoken-language
acquisition task in which a software robot learns to fulfill its
desire by correctly identifying and uttering the name of its pre-
ferred object from the given images, without relying on any la-
beled dataset. We propose an unsupervised vision-based fo-
cusing strategy and a pre-training approach based on sound-
image grounding to boost the efficiency of reinforcement learn-
ing. These ideas are motivated by the introspection that human
babies first observe the world and then try actions to realize
their desires. Our experiments show that the software robot can
successfully acquire spoken language from spoken indications
with images and dialogues. Moreover, the learning speed of
reinforcement learning is significantly improved compared to
several baseline approaches.
Index Terms: spoken language acquisition, speech understand-
ing, human-computer interaction

1. Introduction
The performance of automatic speech-recognition systems has
become comparable with or even surpassed humans in several
conditions. However, its performance relies on a large amount
of transcribed speech data. Furthermore, this need for tran-
scribed labels is an essential limitation in many more applica-
tions that require individual adaptations to new linguistic ex-
pressions and their semantic understanding. For example, for
robots that coexist with humans, they will need this ability.

In principle, it is possible for an end-to-end neural-network-
based dialogue system to learn a spoken language through di-
alogue without relying on a transcribed speech corpus by re-
inforcement learning. However, merely applying reinforce-
ment learning to speech response learning requires an unreal-
istic number of trials because the action is a speech utterance
whose dimension can be very high. Unsupervised learning such
as word-unit learning and sound-and-image object grounding is
another direction of automatic spoken-language learning. Al-
though these methods have been proven to work in principle,
most of them suffer from low accuracy. On the other hand,
humans have a very flexible and strong capability for spoken
language learning. A hypothesis in the neurobiology area states
that humans combine various types of learning functions in a
certain manner to form a superior learning system [1].

A software robot has been developed in [2] that learns spo-
ken language by combining Deep Q-learning (DQN) [3]-based
reinforcement learning and ES-KMeans [4]-based unsupervised
word learning. The key idea of the research was to make a sound
dictionary through the unsupervised word learning from speech

and then use the sound dictionary as the action space in the re-
inforcement learning to reduce the search space significantly.
However, one limitation of the robot is that the action space
is linear to the dictionary size. With the increase in the size
of the dictionary, which includes broken segments, the chance
of making correct utterance decreases linearly, especially at the
beginning of the learning.

In human spoken-language learning, vision plays an impor-
tant role in guiding the focus. For example, young children
learn object names from picture books and recitation by their
parents. With the conversations about the objects in the picture,
pronunciation accuracy, and the spoken language understand-
ing is improved. In this paper, we propose a new learning algo-
rithm that realizes the vision-aided, efficient spoken-language
learning by introducing an unsupervised sound-image learning
module to the sound-dictionary-based spoken-language learn-
ing robot 1.

2. Related Work
2.1. Grounded Language Learning

Grounded language learning is an area of research that is closely
related to our task. The main idea is to associate an abstract
term in language with tangible objects such as images or actions
or to perform classification on this term [5, 6, 7]. In the early
years, Siskind presented a non-statistical language-grounding
model consisting of many handmade logics [8, 9]. Several
reinforcement-learning-based methods have been proposed to
automatically obtain high-performance grounding models. Her-
mann et al. [10] introduced a language acquisition model that
moves the robot around in a virtual 3D environment following
orders. Yu et al. [11] proposed a language acquisition model for
question answering and sentence-directed navigation trained by
interacting with the virtual 2D world. Sinha et al. [12] presented
an attention-based language-grounding model that navigates the
user to the place specified in a given description sentence. Sig-
urdsson et al. [13] proposed a model to improve unsupervised
word translation by using visual grounding. However, those
models are text-based and, therefore, do not simulate spoken
language-learning processes per se.

2.2. Visual-Audio Correspondence Learning

Several works study word unit learning from raw sound and
audio-visual grounding without using annotation labels. One
approach is to apply clustering to audio-visual paired in-
puts [14]. Another approach is to train a binary classifier to
judge if these audio and visual samples correspond to the same
event or not [15, 16, 17, 18, 19]. Although spoken language ac-
quisition is more than just learning correspondence, these ideas

1We will release our system and dataset at our web page www.ts.
ip.titech.ac.jp.
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Figure 1: The top part represents the indication phase while the
bottom part represent the question answering dialogue phase of
the designed task. The robot does not use any text label.

serve as the foundation for our task’s setting.

3. Spoken Language Acquisition Task
We designed a spoken language acquisition task with a soft-
ware robot, in which the robot is analogized to be a newly-born
infant who is an active language learner. The robot is shown
with an image of a food item randomly selected from a finite
set. At the same time, a vocal description of the image’s con-
tent is given. Example images and their corresponding descrip-
tions are shown in Figure 1. The description is only given in
waveform without text. After certain rounds of “study”, the
robot is then given a pair of images with the question: “Which
do you want?”. The robot has an internal preference for the
color of the food, which is randomly assigned at each one-turn
episode. Speech recognition on the vocal answers from the
robot is performed by the environment. The robot is rewarded
when it speaks the correct food name with the preferred color;
it is not rewarded when it speaks the wrong food name or says
non-meaningful words. For example, the robot is supposed to
answer “Orange” in a case when the internal color preference
is yellow or “Apple” when the color preference is red, as in the
situation shown in Figure 1.

4. Preliminaries
4.1. Deep Q-Learning

The Deep Q-learning (or Deep Q-Network, DQN) method is
a variant of Q-learning. It was introduced by Mnih et al. [3]
to tackle highly complex situations in reinforcement learning.
DQN has been proven to be effective in many challenging tasks,
such as computer resource management [20], robotics [21], and
even chemistry [22].

4.2. Unsupervised Sound-Image Learning Algorithm

The unsupervised sound-image correspondence learning is in-
troduced by Harwath et al. [15]. In their model, an image and
the corresponding audio description are fed into the visual and
audio extractors, respectively. The extracted feature vectors are
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Figure 2: System structure. The top part structure is the same
between the baseline and the proposed systems. The bottom
part illustrates the newly introduced focusing mechanism and
the action filter.

then tied together by calculating their L2 distance, which is re-
ferred to as the similarity score. In this way, the model automat-
ically learns associations between images and audio descrip-
tions. To train the model in an unsupervised manner, Harwath
et al. employed a variant of the triplet loss. The goal of triplet
loss-based learning is to enlarge the differences of the similarity
scores between the ground-truth pairs and others. We train the
network by using the triplet loss shown in equation (1) and (2).
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where xI and x+S are the original image and the corresponding
audio description, x−S is a randomly selected audio description
from other than x+S , vI is the image feature extracted by fI , v+S
and v−S are paired and unpaired sound features extracted by fS ,
and ∆ is a positive constant.

4.3. Sound Dictionary

The sound dictionary is defined as a set of sound segments.
The robot selects and plays one of them to tell its intentions.
We make the sound dictionary following [2] from a continuous
speech without label information. We apply random-cut based
segmentation and ES-KMeans [4] to segment the continuous
speech and use the segmented speeches as the sound dictionary.

5. Spoken Language Acquisition Robots
We show the overall structure of the baseline and the proposed
systems in Figure 2. Since the question in the dialogue phase
is always the same (i.e., “Which do you want?”) due to the task
design, the robot receives only two images as the input; there is
no explicit question input. We assume that the value range of Q
function is 0 to 1.

5.1. Baseline System

The baseline system is a direct application of the sound-
dictionary-based method [2] by adding two image front-ends to
receive two images. The baseline robot simply selects a sound
segment from the sound dictionary when given a pair of images
xI1 and xI2. According to the internal state sin and the choice
of the sound segment index a, the robot gets a reward r.

We use simplified deep Q-learning and adjust it to our task
setting. Algorithm 1 describes the process, where xI1 and xI2
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Algorithm 1 Q-learning for language acquisition
1: Initialize action-value function Q with random weights θ
2: for episode = 1 to S do
3: Set a pair of images xI1, xI2. Set internal state sin
4: s = xI1 ⊕ xI2 ⊕ sin
5: Select a = arg maxaQ(s, a; θ)
6: Execute action a in the environment and obtain reward
r

7: Perform gradient descent with
L (θ) = (r −Q(s, a; θ))2

8: end for

are vectorized images, and ⊕ indicates concatenation operation.
Because the task is not sequential (only one turn interaction at a
conversation), we do not need the target Q-network to estimate
the reward corresponding to the state and action. The Q-value
is just the reward the software robot gets after each interaction
with the environment. The Q-network is defined as follows:

ś = gI (xI1) ⊕ gI (xI2) ⊕ gp (sin) , (3)
Q(s, a; θ) = σ(gc(ś))[a], (4)

where gI is a randomly initialized convolution neural network
(CNN), and gp and gc are multi-layer fully connected neural
networks (FCN). The output layer size of gc is equal to the
sound dictionary size, and σ()[a] indicates a-th element of the
softmax function. The parameters of the two image front-ends
are shared. The Q-network is trained to output higher Q-values
on the desired food given in the images.

5.2. Proposed System

The proposed system adds pre-training of the image front-end
and a vision-based focusing mechanism to the baseline.

5.2.1. Pretraining of image front-ends

In the baseline system, the image front-end gI is randomly ini-
tialized. In the proposed method, we initialize it by using pa-
rameters obtained as fI in the sound-image unsupervised learn-
ing. Because fI is trained so that the output is useful for sound-
image pair/unpair judgment, we can expect that fI is good at
distinguishing the food types.

5.2.2. Vision based focusing

The sound dictionary size is usually large; letting the robot di-
rectly explore it is inefficient. We can make the learning process
more efficient by having the robot focus on a limited number
of sound words in the dictionary associated with objects in the
robot’s view field.

We perform K-means clustering for the image features of
the image data using fI after the indication phase, and obtainM
clusters with centroids c1 to cM that are expected to correspond
to the food type as shown in Equation (5).

[c1, ...cM ] = KMeans(fI(xI,1), ...fI(xI,n)), (5)

where n is the size of the sound-image pair data. We also
apply the sound front-end fS to each of the sound dictionary
entries. The image and sound features have the same dimen-
sion of f , and share the same meaning in the space because of
the triplet loss-based learning. For each cluster centroid cm,
we select L closest sound segments based on Euclidean dis-
tance. We obtain a list of LM sound segments and use it as
a new sound dictionary. We define an association score vector

Algorithm 2 Learning of the action filter
1: Initialize action filter A with matrix of all ones
2: for episode = 1 to S do
3: Execute action a in environment and obtain reward r

(a is l-th sound segment in the m-th cluster)
4: if r ≥ β then
5: A[:,m] = λ ∗A[:,m]
6: A[l,m] = 1
7: else
8: A[l,m] = λ ∗A[l,m]
9: end if

10: end for

τxI = [τxI
1 τxI

2 , · · · , τxI
M ] between the clusters and an input

image xI by Equations (6) and (7).

τ̂xI
m = σ(−d(fI(xI), [c1, ...cM ]))[m], (6)
τxI
m = τ̂xI

m /max(τ̂xI ), (7)

where d is the Euclidean distance.
Then, we integrate the association score into the Q-network

as a focusing mechanism to boost the probability of choosing
the sound segment entries corresponding to images shown to
the robot. The network represented by Equations (3) and (4) are
extended as Equations (8) to (10).

ś = gI (xI1) ⊕ gI (xI2) ⊕ gp (sin) , (8)
[α1, α2, α3] = σ (ǵc (ś)) (9)

Q(s, a, θ) =
(
α1 vec (1τxI1)T + α2 vec (1τxI2)T

+α3ĝc (ś)
)

[a], (10)

where 1 is a L-dimensional ones vector, vec is vectorization
operation, T is the transpose and ǵc, ĝc are randomly initialized
FCNs.

5.2.3. Action filter

We introduce a learnable action filter A that helps the robot to
select the right sound segment corresponding to the intended
object overriding the initial noisy association score through the
trials of the question answering. A is a L×M matrix estimated
by an algorithm shown in Algorithm 2, where λ is a coefficient
to control the learning speed of A, and β is a threshold for suc-
cess judgment. We integrate the action filter into the Q-network
by extending Equations (3) and (4) to Equations (11) to (14).

ś = gI (xI1) ⊕ gI (xI2) ⊕ gp (sin) , (11)
[α1, α2] = σ (ǵc (ś)) , (12)

h = α1 vec (1τxI1)T + α2 vec (1τxI2)T , (13)

Q(s, a; θ) =
(

vec(A)T ∗ h
)

[a] + ε, (14)

where ǵc is a randomly initialized FCN, and ε is a random noise
from 0 to 0.1 added when selecting an action to mimic epsilon-
greedy strategy. The network structure represented by Equa-
tions (11) to (13) is to select a desired object, and Equations (14)
is to select an appropriate sound segment.

6. Experimental Setup and Results
6.1. Dataset Construction

We developed and used our own dataset rather than using ex-
isting one because Flickr 8K [23] did not have corresponding
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questions. The VQA dataset [24] had many human-made ques-
tions, but they were too complex for the current system. Our
dataset consisted of food images and corresponding audio de-
scriptions. We took photos of 120 sets of food in 20 cate-
gories: apple, banana, carrot, cherry, cucumber, egg, eggplant,
green pepper, hyacinth bean, kiwi fruit, lemon, onion, orange,
potato, sliced bread, small cabbage, strawberry, sweet potato,
tomato, and white radish. Audio descriptions were generated
using Google Text-To-Speech library 2. For each category, we
applied four templates to generate descriptions of the contents:
e.g., “apple,” “An apple,” “A red apple,” and “It’s an apple.” To
make the synthetic data more realistic, we added 20dB of Gaus-
sian noise to audio descriptions. Among the 120 sets of food
images, we used 90 to form a training set and 30 for a test set.
The training set consisted of 7,200 sound-images pairs (= 20
food categories × 90 image samples × 4 sound descriptions).
All the 7,200 waveforms were different because we added ran-
dom noises. The test set had 600 images samples(= 20 food
categories × 30 samples) .

6.2. Task Setting Details

In the indication phase, we used two types of data. One is the
sound-image paired data, which we used to train feature extrac-
tors fI and fS . Another is the continuous speech that is made
by concatenating 720 random samples of the audio descriptions,
with 1-3 seconds of random intervals and 20dB of Gaussian
noise. We used it to make the sound dictionary. In the dialogue
phase, the robot is assigned a random preference color at each
one-turn episode as an internal state and is randomly shown two
food images in the test set as input. The robot wants a food ob-
ject with an average color closer to its preference, where the Eu-
clidean distance is measured in the RGB space. As the spoken
dialogue environment, we used a general-purpose ASR system
provided by Google 3. If the recognition result of the robot’s
utterance is the name of the preferred food, the robot gets a
reward, r = 1. If the recognition result is the name of an unin-
tended object or something else, it gets no reward, r = 0.

We constructed the sound dictionary in two different ways:
random segmentation and ES-KMeans. We ran the reinforce-
ment learning experiments with three different settings: Q-
network without focusing with gI ’s parameter initialized ran-
domly, Q-network without focusing with gI ’s parameter initial-
ized using the pre-trained model, and Q-network with focusing
and gI ’s parameter initialized using a pre-trained model. We
called the first one “Baseline,” the second one “Pretrained w/o
Focusing,” and the last one “Pretrained w/ Focusing.” We re-
ferred to with and without action filter as “w/ A” and “w/o A”.
We ran the reinforcement learning three times with different
random seeds and obtained averaged rewards.

6.3. Model Hyperparameters

We set K to 2 for the ES-KMeans clustering in the sound dic-
tionary learning. Features size f is 50. For the focusing mech-
anism, we set the number of K-means clusters M to 40 and the
number of sound segmentsL chosen by each cluster to 500. The
updating coefficient λ of Action filter is 0.9, and β is 1. The gI
is ResNet-50 [25].

The shape of the internal state front-end network gp is (3,
50). For the baseline system, gc is (150, 75, ds) where the sound
dictionary size ds is 2306 when the random segmentation is
performed and 1996 when the ES-KMeans is used. The sound

2https://pypi.org/project/gTTS/
3https://cloud.google.com/speech-to-text/docs/reference/rest/

Figure 3: Average reward in the dialogue phase.

Table 1: Final rewards

Pretrained Focusing Action Segment Final
Filter reward

◦ ◦ ◦ ES-KMeans 0.920
◦ ◦ ◦ Random 0.925
◦ ◦ × ES-KMeans 0.729
◦ × × ES-KMeans 0.154
◦ × × Random 0.135
× × × ES-KMeans 0.136
× × × Random 0.109

dictionary size is LM = 20000 when the focusing mechanism
is used. When the action filter is not used, ĝc has size of (150,
75, LM ) and ǵc is (150, 75, 3). When the action filter is used,
ǵc is (150, 75, 2). We determined these settings based on a
preliminary experiment.

6.4. Results and Analysis

We show the learning curves of models in Figure 3. The hor-
izontal axis is the number of episodes, and the vertical axis is
the reward. We also show the final rewards in Table 1. We
can confirm that pretraining of image front-ends improves the
learning speed for both segmentation conditions. We can also
confirm that the focusing module strongly improved the learn-
ing speed. Note that unlike the other results, the ES-KMeans
is not effective on the proposed method with the focusing mod-
ule. This means the focusing module can help the robot select
meaningful speech from action space, regardless of the number
of obtained meaningful words.

7. Conclusion
We demonstrated the feasibility of a robot in zero-resource
spoken language acquisition tasks by leveraging sound-image
correspondence. We also took one step further by propos-
ing a novel framework to accelerate this learning process with
the combination of unsupervised multimodal pre-training and
vision-based focusing strategy. Future works include generaliz-
ing the concept with a larger and more realistic dataset, using
video data instead of images, and extending the applicability to
more general cases by combining dialogue system strategies.
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