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ABSTRACT
The process of spoken-language acquisition has been one of
the topics of greatest interest to linguists for decades. By uti-
lizing modern machine learning techniques, we simulated this
process on computers, which helps to understand it and de-
velop new possibilities of applying this concept on intelligent
robots, among other things. This paper proposes a new frame-
work for simulating spoken-language acquisition by combin-
ing reinforcement learning and unsupervised learning meth-
ods. Our experiments also show that a spoken language can
be acquired considerably faster by identifying potential word
segments from collected ambient sounds in an unsupervised
manner.

Index Terms— Spoken language acquisition, zero re-
source word segmentation, reinforcement learning

1. INTRODUCTION

The mechanism that enables human beings to acquire spoken
language from scratch still remains mysterious and fascinat-
ing for linguists and scientists. One prominent and widely
accepted explanation, proposed by Skinner in 1957 [1], states
that children acquire language based on behaviorist reinforce-
ment principles, by associating words with meanings. Along
with the advance in Artificial Intelligence (AI) and Machine
Learning technologies, we are now capable of simulating this
complex process on computers. In fact, computer models that
simulate cognitive processes are making astonishing progress
in many ways, such as playing Go [2] or video games [3],
processing speech and natural language [4, 5] and recognis-
ing objects [6] or faces [7]. In this paper, we work in the
direction of Skinner’s idea and provide a proof of concept by
running a computer-simulated experiment.

One area of research that is similar to our interest is the
grounded language learning problem, which refers to asso-
ciating an abstract language term to tangible objects such as
images or actions or classifying this term [8, 9]. In the early
years, Siskind presented a non-statistical language-grounding
model that consisted of many handmade logics [10, 11]. Sev-
eral reinforcement-learning-based methods have been pro-
posed to automatically construct high-performance ground-
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ing models. Hermann et al. introduced a language-acquisition
model that moves the agent around in a virtual 3D environ-
ment according to the instruction from a given sentence [12].
Yu et al. proposed a language acquisition model for question
answering and sentence-directed navigation that is trained
by interacting with the virtual 2D world [13]. Sinha et al.
presented an attention-based language-grounding model that
navigates the user to the place specified in a given descriptive
sentence [14]. However, those models use texts as inputs and
are not simulating the spoken language-learning processes
per se.

To ground spoken language, Roy proposed a grounded
spoken-language acquisition model that segments continuous
speech and associates it to the visual category, using input
from a camera and a microphone [15]. Chauhan et al. intro-
duced the categorizing model, with an extended condition that
the number of segmentation categories is open-ended and new
categories can be added incrementally [16]. These verbally
based models use pairs of spoken utterances and single ob-
jects to train the models, and they ground based on phoneme
sequences. Yu et al. have proposed a co-occurrence-based
categorizing model trained by images that contain multiple
objects and their spoken descriptions [17]. While these tasks
look similar to our research, they are fundamentally different
in that they are supervised and carried out in a way that does
not reflect the true condition of early-stage spoken language
learning for human beings and, thus, does not serve as proof
for Skinner’s idea.

E. Dupoux (2018) gives a holistic overview of the recent
developments in the field of computer-simulated infant lan-
guage learners [18]. However, his article focuses on provid-
ing insights rather than concrete solutions.

The rest of this paper is organized in the following order.
Section 2 introduces the fundamentals of Deep Q-Learning.
Section 3 introduces the unsupervised word segmentation and
ES-KMeans algorithm. A designed task that demonstrates our
idea is explained in Section 4. Section 5 gives a detailed de-
scription of our proposed method. Section 6 explains how the
experiments are carried out. The respective results are stated
and analyzed in Section 7. Finally, Section 8 concludes the
paper and gives some insights into our idea.
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2. DEEP Q-LEARNING

The Deep Q-learning (or Deep Q-Network, DQN) method is
a variant of Q-learning introduced by Mnih et al. [3] to han-
dle the challenges in complex reinforcement learning environ-
ments. It has proven to be effective in many challenging tasks
such as computer resource management [19], robotics [20]
and even chemistry [21].

DQN applies two deep neural networks (DNN) to esti-
mate the action-value function Q(s, a; θ). One is the policy
Q-network Q with weights θ, which is used to decide the ac-
tion; and the other one is the target network Q̂ with weights
θ−, which is used for generating the Q-learning targets. Ev-
ery C updates, the target network Q̂ copies the weights θ from
the policy network Q.

The weights θ are updated by gradient descent. The loss
function L(θ) is calculated as follows:

y = r + γmaxa′Q̂(s′, a′; θ−), (1)

L(θ) = (y −Q(s, a; θ))2, (2)

where y is the target, r is the reward of the current action a, γ
is the discounting factor, and s′ and a′ are the expected state
and action of the next step, respectively.

3. ES-KMEANS WORD SEGMENTATION

Unsupervised word segmentation aims to tackle the problem
of identifying word units (word boundaries) from a relatively
long utterance under a zero resource condition. Several re-
search attempts have been made in this direction. [22] at-
tempts to model the problem in a Bayesian way. [23] tries
to sort out a solution at the syllable level. [24] proposes
an embedded segmental model that embeds audio segments
into fixed-length embeddings and then applies K-means algo-
rithms on them.

Amongst several existing unsupervised word segmenta-
tion techniques, this paper uses the ES-KMeans method pro-
posed in [24], which is one of the most sophisticated ones
with low computational complexity while maintaining a rela-
tively low unsupervised Word Error Rate (WER). We briefly
discuss the general idea of the ES-KMeans in the rest of this
section.

Given an audio clip consisting of frames (e.g., MFCC
feature vectors): y1:M = y1, y2, ..., yM , the aim is to break
this sequence down into different sub-segments of meaning-
ful words. We first define an embedding function fe which
maps an arbitrary-length segment (e.g., yt1 : yt2) into a fixed-
dimension embedding xi of x ∈ RD:

fe(yt1 : yt2) = xi. (3)

There are multiple choices for this embedding function. For
this paper, we use a simple down-sampling technique in the
toolset from S. Bhati [23]1.

1https://github.com/ramesh720/recipe zs2017 track2 phoneme

The long utterance is first randomly cut into segments q.
The embeddings of the segments are then clustered by a K-
means algorithm under a fixed set of segmentation boundaries
q. We then fix cluster assignments z and optimize q. This op-
timization loop is repeated on a joint target function as follows
until convergence:

minz

K∑
c=1

∑
x∈Xc

||x− µc||2, (4)

where {µK
c=1} are the cluster means, Xc are all vectors as-

signed to cluster c, and element zi in z indicates to which
cluster xi belongs. The main idea behind this approach is that
acoustically similar segments should get geometrically closer
in the embedding space after the clustering. The full ES-
KMeans method involves more complex and rigorous proof
than the general idea presented here. Detailed elaboration can
be found in [24].

4. LANGUAGE ACQUISITION TASK

We designed a language acquisition task to demonstrate our
idea. In this task, the agent is set to be in a 3D space and to
have the motivation to be at or closer to the origin as possible.
The agent has to learn by itself how to use the correct words
to move efficiently. To model the task mathematically, we use
3-dimensional coordinates (x, y, z) to represent agent’s posi-
tion. The agent is initialized at a random position (x0, y0, z0),
where x0, y0, z0 are integers in the range of [−k, k], and the
origin is set to be the final destination. The agent is given a
long speech clip that contains word segments. Some of the
words contained are meaningful (e.g. up, down, left, right,
forward, backward) and the environment responds by push-
ing the agent along in the corresponding direction by one unit
when the agent pronounces the word while the other words
have no meaning (the environment does not respond to such
words). First, the agent has to identify the words from the
long clip and learn to choose the correct words based on its
current position, thereby finding a way to the origin.

5. PROPOSED METHOD

The structure of our proposed system is represented in Fig.
1. The agent is an entity that has its own internal motiva-
tions and tries to acquire spoken language that can facilitate
its communication with the external environment to achieve
its desires. The agent is assumed to have zero prior knowl-
edge of the language, like a newborn baby. It first makes an
observation. In our case, this is a speech segment from the en-
vironment. (This can be interpreted as what infants hear from
the surroundings when learning a language.) It then identifies
the word units within this long segment and makes use of un-
supervised word segmentation techniques under zero resource
conditions. This part is realized by the ES-KMeans algorithm
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Fig. 1. Overview of the proposed system

Fig. 2. System structure

proposed by [24] which has been discussed in detail in section
3.

Action refers to the utterance that the agent makes to the
environment. The agent repeatedly attempts to speak to the
environment. The environment then gives the agent corre-
sponding feedback, which is picked up by the agent. The
agent evaluates the current action’s reward based on this feed-
back and its current internal states to evaluate the attempt
made—whether it was a good or a bad attempt. With mul-
tiple repetitions of this loop, the agent learns how to choose
what to say under which circumstance and finally acquires the
ability to speak to some extent as illustrated in section 2.

This stage is achieved through the Deep Q-learning tech-
nique. The detailed system implementation is illustrated in
Fig. 2. The long utterance is first fed into the ES-Kmeans al-
gorithm, whose output represents the boundaries of identified
words. The agent then takes the segmented words as action
space for the Deep Q-learning algorithm to start the learning
loop. An action (a word to pronounce) is first decided by the
initial Deep Q-Network and output to the environment. In
real use cases, the environment interacting with the agent can
eventually be replaced with a collection of real humans. But
for the illustration’s purpose, we adopt a trained ASR (Auto-
matic Speech Recognition) model to do the action evaluation
task. The ASR model in the environment then evaluates the
received waveform and attempts to recognize the pronounced

word. The recognized word is then sent to the feedback eval-
uation algorithm to determine what kind of action must be
posed back onto the agent. After receiving feedback from the
environment, the agent evaluates the reward for the current
iteration based on the feedback and its current internal state.
The reward is then used to tune the decision-making Deep
Q-Network to a better state. As this loop goes on, the agent
gradually learns to make proper decisions on what to speak
(in other words, the agent starts to appreciate the meaning of
the words)

6. EXPERIMENT SETUP

6.1. Task Setup

The task described in section 4 is set up as follows. The k is
set at 22, and the maximum number of steps taken for each
round is set at 5,000. If the agent does not come back to the
origin after 5,000 steps, the round fails, and the agent position
is reset.

6.2. Dataset

For the initial long utterance, we used the Google Speech
Commands Dataset: an English voice command dataset with
65,000 one-second-long utterances of 35 short words by thou-
sands of different people. As explained in Section 4, there are
six meaningful words: up, down, left, right, forward, back-
ward. These make the agent move in the corresponding di-
rection in the scenario we designed. Therefore, we pick 200
samples of each of these six words and an additional 200 sam-
ples of the word “marvin,” which serves as noise in the input
data. In total, there are 1,400 samples, which we then con-
catenate into a single wave file. To demonstrate the impor-
tance and effectiveness of unsupervised word segmentation
in the system, we performed it in two forms. The first one is a
random-cut baseline. For this, we cut the long utterance ran-
domly with an average duration of approximately one word
(e.g., 500–1,200ms). As it is cut randomly, broken word seg-
ments are expected to be more frequent as a result. For the
second one, we pass the long utterance into the unsupervised
word segmentation algorithm.

6.3. ASR Model

The ASR model used is Google Speech-to-Text API 2, which
is a trained general-purpose ASR system. We aimed to make
the simulation as close to a real-world situation as possible by
making this choice.

6.4. Deep Q-Network

The Deep Q-learning model is designed to have an action
space of around 2,000 which corresponds to the number of

2https://cloud.google.com/speech-to-text/docs/reference/rest/

6151



Recog. Meaningful Words Accuracy
Rand. Baseline 236 19.7%

Unsup. Seg. 447 37.3%

Table 1. Performance comparison between random cut base-
line and unsupervised word segmentation

word segments identified by either unsupervised or random
segmentation. Out of all of these, only a portion can be con-
sidered valid actions, namely, those that can be recognized by
ASR. The Q-net is trained to output higher Q values on those
valid actions given the current state of the agent.

The state of the agent is set as its current position and the
satisfaction level SL is set to be the minus euclidean distance
between the current position of the agent and the origin. The
reward function r is designed to be the change in the satisfac-
tion level between two consecutive steps:

SL(t) = −(x2t + y2t + z2t ), (5)

r(t) = SL(t)− SL(t− 1), (6)

where xt, yt, and zt are the coordinates of the agent at step t.

7. RESULTS AND ANALYSIS

The word recognition rate is compared in Table 1. This is cal-
culated by the number of recognized meaningful words over
the total number of actual words (i.e. 1,200). We blindly
obey the results from ASR but ignore the true quality of the
identified words based on the fact that the only information
source for the agent is the environment (ASR in this case). We
observed that the unsupervised word segmentation method is
18% more accurate than the random-cut method.

Fig. 3 shows the results of running the Deep Q-learning
model on the designed task in section 4 . The vertical axis
represents the steps taken by the agent to return to the ori-
gin for each episode. The results are obtained by running
50 episodes over 100 random seeds. From (a), we can safely
conclude that the acquisition of spoken language is successful
in both methods as the number of steps taken eventually con-
verges. The random-cut does work as well because as long
as there are meaningful candidates of valid words, the agent
is able to learn to speak correctly by reinforcement learning.
However, from (b) we do observe a difference in their speed
of learning. Unsupervised-learning-supported reinforcement
learning does excel with a 35.45% reduction in the average
number of steps taken for the first episode, and this difference
would be further amplified in more complex and larger-scale
spoken language acquisition tasks. The unsupervised method
also shows greater stability in performance, considering the
standard deviation shown in the results.
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(a) Result of 50 episodes
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(b) Result of first 5 episodes

Fig. 3. The curves represent the means of numbers of steps
taken per episode. The shadows represent the standard devia-
tion.

8. CONCLUSION

In this paper, we simulated the process of spoken language
acquisition of human beings on computers and offered strong
evidence for the hypothesis that the process of acquiring spo-
ken language is fundamentally a combination of observing
the environment, processing the observation, and grounding
the observed inputs with their true meaning through a se-
ries of reinforcement attempts. While the idea is conceptu-
ally straightforward, our results demonstrated the feasibility
of unsupervised-learning-supported reinforcement learning in
solving problems under zero resource circumstances. Our fu-
ture works will include: further confirmation of the idea on
larger and more realistic data sets; thinking of possible real-
world scenarios where this idea can be useful; and extend-
ing our research to the ideas from [25], which gives detailed
and evidenced insights on real-world infant language learning
processes.
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