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Multi-Granularity Sequence Alignment Mapping for
Encoder-Decoder Based End-to-end ASR
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Abstract—Encoder-decoder based automatic speech recogni-
tion (ASR) methods are increasingly popular due to their
simplified processing stages and low reliance on prior knowledge.
Conventional encoder-decoder based approaches usually learn a
sequence-to-sequence mapping function from the source speech
to target units (e.g., subwords, characters) in an end-to-end
manner. However, it is still unclear how to choose the optimal
target unit, or granularity of multiple units. In general, as
increasing the information available for learning sequence-to-
sequence mapping functions can improve modeling effectiveness,
we therefore propose a multi-granularity sequence alignment
(MGSA) approach. This aims to enhance cross-sequence interac-
tions between different granularity units for both modeling and
inference stages in the encoder-decoder based ASR. Specifically,
a decoder module is designed to generate multi-granularity se-
quence predictions. We then exploit the latent alignment mapping
among units having different levels of granularity, by utilizing the
decoded multi-level sequences as input for model prediction. The
cross-sequence interaction can also be employed to re-calibrate
output probabilities in the proposed post-inference algorithm.
Experimental results on both WSJ-80hrs and Switchboard-
300hrs datasets show the superiority of the proposed method
compared to traditional multi-task methods as well as to single
granularity baseline systems.

Index Terms—Multi-granularity, sequence alignment, end-to-
end ASR, encoder-decoder, post-inference, deep learning.

I. INTRODUCTION

UTOMATIC speech recognition (ASR) has improved

tremendously in recent years thanks to advanced deep
learning (DL) techniques. Traditional DL-based methods are
mostly based on a hybrid architecture, which consists of
several separately trained components using conditional in-
dependent approximations [1]. End-to-end based methods
have been proposed recently to learn sequence-to-sequence
mappings from source speech to target units. For example,
in connectionist temporal classification (CTC) [2], recurrent
neural network (RNN) transducer [3], segmental conditional
random fields (SCRFs) [4], attention-based encoder decoder
(AED) [5] and transformer methods [6]. These have achieved
comparable or even better performance than traditional hybrid
systems [7] due to the reduced reliance on prior information
and benefit from simplified processing stages. Performance can
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word : of course not
t(c): 12 3 45 67 89 10 11 12 13
char: O F<space>C O U R S E <space>N O T
A AINIZe
subword: _OF _C OUR SE _NOT
t(b): 1 2 3 4 5
Fig. 1. An example of the alignment mapping relationship between multi-

granularity sequences; subword unit “OUR” corresponds to the single charac-
ter sub-sequence “O”, “U” and “R”. The units in multi-granularity sequences
(e.g., “OUR* or “O”) are referred to as “tokens” in this work.

be further improved by fusing different architectures under
a framework such as multi-task learning (MTL) [8]. As a
representative end-to-end model [9], we will adopt the AED as
the basis for the derivation of the proposed multi-granularity
sequence alignment method.

Sequence-to-sequence learning approaches involve mapping
input acoustic frames to target units. These units can have
different granularities, such as words [10], characters [5].
Intuitively, word-based targets are more natural and have been
shown to be simpler and faster for decoding [11]. However,
the large number of possible words leads to a large model
size and high computational complexity in implementation.
Moreover, the word-level modeling requires a large amount of
training data. By contrast, character-level targets enjoy smaller
model size and less extensive training, yet fail to exploit
long-term context information effectively. Thus intermediate
units (e.g., subwords) were proposed [12] to trade-off between
model complexity and capability. However, the optimality of
the target unit(s) size, and the corresponding granularity for
end-to-end based ASR is still questionable!.

As more information is likely to be captured from multiple
targets of different granularity, this can potentially improve the
modeling capability. The MTL method was thus proposed to
learn multiple sequence-to-sequence mappings jointly in [13]-
[15]. Meanwhile, a multi-stage pre-training based method [16],
[17] was proposed to improve the training efficiency. To
combine results obtained from different granularities, we can
simply use score fusion [18]-[20]. Although this improves the
ASR performance compared to single-granularity approaches,
few of them take account of relationships between sequences

!Consider a simple example to illustrate the impact of different granular-
ities. Given the same input speech, a character-level hypothesis might give a
recognition result of “He adapt a dog” whereas word-level transcription yields
“HE <space> AD OPTED <space> A”. In this case neither are correct,
but cross-verification would correctly yield “He adopted a dog.”
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Fig. 2. The proposed MGSA approach for end-to-end ASR, where the align-
ment mapping information is applied for use in both architecture construction
(the red dashed line) and output re-scoring (the solid red line).

of different granularity. Actually, there exists a latent align-
ment mapping between two sequences, as shown in Fig. I.
For instance, the text “of course not” can be represented as
a subword sequence “_OF _C OUR SE _NOT”, or as “O
F <space> C O U R S E <space> N O T” at character-
level. The mapping from subwords to characters, termed the
alignment mapping in this work, can explicitly indicate the
relationship between sequences.

Contributions: In this work, we propose a novel multi-
granularity sequence alignment (MGSA) approach for the
AED based ASR, which is based on the use of the alignment
mapping information between multi-granularity (MG) units.
The end-to-end ASR can be divided into training and inference
stages, and the use of the alignment mapping is considered in
both stages. The general framework of the proposed MGSA
method is shown in Fig. 2(b). Compared to the commonly-
used MTL-based multi-granularity end-to-end approach in
Fig. 2(a), there are three main differences. Firstly, the align-
ment mapping information is estimated based on the joint
optimization of the MG conditional posterior probabilities.
Secondly, a new decoder module is used to merge the historical
contents of the alignment mapping information. The resulting
inherently MG information can then be used by the decoder
to generate multiple predictions for MG units. As such, the
interaction and fusion process of the MG units are exploited
in the model architecture (the red dashed lines in Fig. 2).
Finally, the MG information is also adopted by the end-to-
end post-inference algorithm (the solid red lines in Fig. 2).
For example, after the model M* generates one token yi, we
can transform it to a new expression y;, using the obtained
alignment mapping information. Using the model M7 to
generate another sequence, the corresponding hypothesis score
Sf, is then used to verify and rectify the output prediction 7.

The proposed MGSA method is evaluated on two ASR
benchmark corpora (WSJ [21] and Switchboard [22]) and
yields a performance improvement over both traditional single-
granularity baseline and MTL approaches. On the WSJ corpus,
the proposed method can reduce the word error rate (WER) by
2.2% (from 11.1% baseline to 8.9%). For eval2000 test set of
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the Switchboard corpus, the WER is reduced by 2.6% (from
17.3% to 14.7%). Although the proposed MGSA method is
built on the original AED architecture, it is also compatible
with other modified frameworks, such as transformer.

The remainder of this paper is organized as follows. Section
IT discusses related works. Section III explores the joint
probability optimization, which is the theoretical foundation
of the proposed MGSA model. In Section IV, the proposed
MGSA approach is detailed, including the sequence alignment
based encoder-decoder design and the post-inference algo-
rithm. Experimental results are presented in Section V, and
finally Section VI concludes this work.

II. RELATED WORKS

The end-to-end ASR makes use of a neural network to map
an acoustic sequence x = (1, Z2,...,2,) of length L to a
text sequence y = (y; € U|t =1,...,T) of length T, where
U denotes the set of target units. Statistically, the objective
of end-to-end modeling is to learn the conditional posterior
probability distribution P (y|x),

Pe(y|w):p(y13y27"'7yT|1717:1;27"-7:L‘L)7 (1)

where 6 contains the model parameters. In general, the text
sequence is categorized into basic units (e.g., phoneme, char-
acter, pinyin) [5], [23], [24], intermediate units (e.g., subword,
wordpiece, phone-based subwords) [12], [20], [25] or word-
level units [26]. Clearly, these three categories have different
granularities. Such different granularity targets have been used
in end-to-end ASR, e.g., phonemes, characters [2], [5], [27],
subwords [28] and words [17], [26], [29], [30], [30].

A. Single target encoder-decoder architecture

As a typical end-to-end model, we consider the encoder-
decoder architecture as an example to explain the training and
inference stages in the single target ASR system. Given an
input sequence , the conditional probability Py(y|x) in the
AED can be decomposed using the chain rule as,

T
Py(ylz) = Hpo(yt|’yt—1,5t—1§fﬂ), )
t=1

where s;_; denotes the state of the decoder at the previous
step. In general, an AED encoder exploits input sequence &
to produce a high-level representation, which will be encoded
into the continuous vector Z. Then the decoder iteratively
generates the discrete target sequence y [27]. It is clear
from (2) that, at each output position, the decoder predicts an
output discrete token ¥, based on the encoder representation
Z, the historical token y;_; and the previous decoder state
st—1. Note that the historical token y;—_1 is not the same
during model training and inference stages. During training,
the decoder is conditioned on the true, known, prefix token
yt—1, whereas during inference, we can only use an assumed
surrogate, say %;—1. Thus, the posterior probability at the
inference stage should be slightly modified based on (2). Given
speech x, the model searches the most likely token Y using
a beam-search algorithm at the inference stage, e.g. in [31],

Y = arg max log p(y|z), 3)

geUu
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During beam-search, the model calculates the score of each
hypothesis, which is defined as the logarithmic probability
of the assumed token sequence. The number of remaining
hypotheses is limited by a predefined number, i.e., the beam
size, which dramatically affects the searching efficiency. The
score for the hypothesis Y can be recursively computed as

Y = argmaxlog [ p(iliie—1: )
Jeu ;

= argmax ) _ log p([fe—1: ). )
geu

Instead of choosing a certain target unit, combining multiple
target sequences can improve the modeling capability. As more
multi-granularity units are considered, more information on
the true audio content can be leveraged. Therefore, a variety
of strategies to integrate multiple target units into such end-
to-end ASR have been investigated, e.g., multi-task learning
strategy, pre-training methods and output score fusion.

B. Multi-granularity end-to-end modeling

Existing multi-task methods can learn useful intermediate
representations among all inputs, and those target units might
be complementary to each other [13]-[15]. In [13], different
training strategies were explored for building char-to-subword
models one block at each time slot. In [14], an intermediate
representation was used as an auxiliary supervision at lower
levels to combine the advantages of end-to-end training and
a traditional pipeline strategy. In addition, some multi-task
models were presented in [15] for simultaneous signal-to-
grapheme and signal-to-phoneme conversions, while sharing
the encoder parameters.

The second integration category is to use the intermediate
target to initialize or to assist the training process for the
word-level target, which can reduce the dependence on the
amount of the transcribed data [16], [17]. As the detection of
subwords provides a robust starting point for detecting words,
the subword-based model was used as the initialization of
word-based modeling in [17]. In [16], a refined multi-stage
multi-task training strategy was presented to improve the AED
modeling performance. This used multiple encoder modules,
corresponding to multiple target units, with each module
exploring a different pre-training method for the encoder,
including transfer learning from a different-level encoder.
Though differing in implementation, the optimization objective
functions in [16], [17] are similar. Taking a target unit pair,
yi and ¢, as an example, the objective function is

p(y'sy’|z) = p(y'|z)p(y’ |@), Q)

under the assumption that the two target units are independent.
However, in practice this assumption on independence may
not hold, resulting in a rather limited performance gain when
applying such methods.

The third integration category is to use multi-level score
fusion to integrate the scores obtained from different target
units in end-to-end modeling [18]-[20]. Hori et al. suggested
combining the predictions of a word-based language model
(LM) with a character-based one at the inference stage, yield-
ing a significant performance improvement over character-only

methods [18]. Specifically, hypotheses are first scored using
the character-based LM until a word boundary is encountered.
Words that are already known are then re-scored using the
word-based LM, while the character-based LM provides for
the out-of-vocabulary score. This method can effectively ex-
ploit the benefits of character-based open vocabulary recogni-
tion and overcome the weak modeling of character-based LM
using the word-based LM. However, an additional LM and
some post-processing operations are required after building the
end-to-end model. Another attempt is to directly combine the
outputs from different targets. For instance, Wang et al. [20]
developed a one-pass beam-search algorithm to efficiently
combine predictions of both subword and phone-based targets.
In this method, when a word boundary in the phone-based
subword prediction is encountered, the token is decomposed
into a subword sequence. This is used by an auxiliary system
to validate or rectify the prediction. Clearly, this method
only considered the correspondence between special tokens
(e.g., word boundaries). However we note that much more
correspondences may exist between other tokens in multiple
target sequences. The utilization of multiple target sequences
was thus not sufficient, since the information contained in
one granularity, but not in other granularities, was not fully
exploited. This might limit the ASR performance gain.

The MGSA framework proposed in this paper aims to better
exploit correspondence between multiple target sequences.

III. PROBABILITY OPTIMIZATION

Given three types of target sequence (e.g., basic units,
intermediate units, word labels), smaller scaled units can be
clustered to form larger scale units, which might correspond
to one or more tokens in the former. In Fig. 3, we show these
three target units in an example that illustrates how word token
“COURSE” can correspond to a subword sub-sequence “_C
OUR SE”, while the subword token “OUR” also uniquely
maps to sub-sequence “O U R”. We can also observe a latent
mapping relationship between the target sequences.

For two target sequences y' = (y},v5,...,y5) and y/ =
(yl,93,...,yX\), where T and N denote the length of the two
sequences, respectively, each token y; in the target sequence
y* might correspond to one or more tokens in the other target
sequence y’. Let yf ) denote the sub-sequence corresponding
to the t-th token in y’ Let the number of tokens contained in
yf ) be denoted by k;, and the u-th token in the sub-sequence
y{t’:) by yiu respectively. For example, ¥ and y{l:) in
Fig. 1 represent the subword token “OUR” and character sub-
sequence “O U R”, respectively. Based on these definitions,
the target sequence y? can be cquivalently rewritten as
v 2wl

(R I N [ T PO [ S AP ) B

(6)

where (b) shows the latent alignment mapping relationship
between two target sequences (i.e., y* and y’).

Given an acoustic sequence x, our goal is to model the joint
conditional distribution Py(y*; y?|x). For the target sequence

7y~}\]) = (y‘(jly:y s aygt_’:y s 7y€T7;))
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word: _COURSE

char: <space>C O U R S E

e A N
1torder Mirkov

Fig. 3. An illustration of the joint optimization probability in multi-granularity end-to-end modeling, where the sequences of character and subword are
denoted by y* and y7, respectively: (a) The original graphical model, (b) the simplified model using causality, (c) the simplified model using the first-order
Markov process, and (d) the final character subsequence unfolding based model.

y’ given in (6), each sub-sequence y{t . maps to one token
in sequence y’. For simplicity, let the token-pair of y! and
the corresponding substring yf £0) be denoted by uf. Thus, the
joint conditional distribution can be expressed as

Po(y's v |x) = p(yt, . upswl, - ui o)
=P Y1y Y Yl )

S P
= p(uy, ub,...,u;

P ule).

N

Due to the correlation between multiple target sequences, the
tokens in this joint conditional probability can influence each
other. Fig. 3(a) shows a graphic representation of (7).

Considering the causality between the target sequences ¥’
and y7, two types of interactions in Fig. 3(a) should be
avoided. One is that the current tokens in one granularity target
sequence should be independent on future tokens in the other
sequence, since i’ » does not affect the prediction of yi_;.
This is called causality across tokens. The other is that for
each token-pair u{ = [y{,y/, )]. one token should have no
effects on the prediction of the other, e.g., token-pair, y{Q_:)
and y3 in Fig. 3 are of different granularities, but describe the
same token “OUR”. As the interaction between tokens inside
a token-pair is directly related to optimizing the probability
p(yﬂyit’:)), in case of modeling the dependency inside the
token pair, the neural network would directly copy the output
from other granularity in the training process. The resulting
model would totally depend on the text information of other
granularities, the encoder module and the attention module
will not be well-trained. Thus, the correlation in token-pair,
like [“OUR”-“O U R”], should not give any output prediction
for each token (e.g., “OUR”) within this token-pair, and we
can thus omit the dependency insider a token-pair. In order to
avoid such situations, we re-write Py(y®; y?|x) as

p

Py =pul)...pp|ul ..l )
=p(ul)...plypluy ... Ug_l)p(yf;p,;ﬂuf cupg)s (8)
where (y; y?|x) is omitted for notational brevity. Considering
the causality and based on (8), we can thus simplify the
graphical model in Fig. 3(a) to Fig. 3(b).

Assuming that the output variables follow the first-order
Markov random process (i.e., the current prediction is only
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affected by the latest token-pair), the joint conditional proba-
bility in (8) can be further simplified as

Py = py)p(Wy.,y) - - - P ol )Py )

T
= p(y}) [ [ pilvi- s vli1 )Py o |93 9] _a )
t=2
©

where yjt: consists of k; tokens. Similarly, (9) can be
graphically illustrated using Fig. 3(c). Based on this, the
prediction process for sub-sequence p(yft_l,:)\yg_Q;yft_z:))
can be unfolded via the chain rule as
T
Py = [[{pWilvi—i; vl_y 1))V (1)}

t=1

(10)

where yf ¢—1,—1) Tepresents the last token in target subsequence

yf 1) and the transition function V(yf t—l,:)) is given by

ki1
V(ygt_l’;)) = H p(yg—l,u
u=1
The unfolding process is graphically shown in Fig. 3(d). This
implies that the joint optimization of two target sequences
should take both history information y;_; and vy’ 1. into
account. In (10) and (11), incaset—1 = 0 or u—1 = 0, both
y5 and y§ will be set to be ‘sos’ as the traditional end-to-end
ASR models. Note that although (10) is built on the basis of
two target sequences, the extension to three or more categories
is straightforward. From the probability analysis above, we can
conclude that there are conditions that need to be satisfied to
enable multi-granularity end-to-end modeling:

« Mapping relation: A strict one-to-many mapping re-
lationship between MG target sequences is the basis of
the joint optimization.

e Independence: For each item of history information
yy_4,v € {i,j}, its historical modeling ability should
be guaranteed, and the influence of history tokens from
other granularity targets should be avoided to ensure
independence between the historical states.

« Interaction prediction: For each target sequence, the
information from other granularities should directly affect
the output prediction.

(1)

i
yt—27yt—1,u—1)'
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In practice, it might be effective to ignore the information
transmission in one direction, namely from a subword to
characters. In this case, (11) can be simplified as

ki1
J _ J J
V(y(t_ly;)) = H p(yt—l,u|yt—17u—1)'

u=1

12)

Note that when applying (11), the alignment mapping in-
formation is taken into account in the calculation of sub-
sequences y{ =1, and the interaction between two different
granularity target sequences is bi-lateral (e.g., see Fig. 3(d)).
However, the simplification in (12) makes that interaction uni-
lateral, e.g., only from a lower granularity 47 to a larger one ¥°
Both the bi-lateral and uni-lateral interactions are considered
in this work and experimentally compared in Section V-A.
Note that in principle there exists a potential interaction from
a larger granularity to a lower one, while it was shown
that in general for the large vocabulary continuous speech
recognition, a larger granularity unit is more robust than the
lower one, and thus more suitable for unit modeling [32].
Therefore, in the considered uni-lateral interaction, we chose
y® as the main granularity unit.

IV. THE PROPOSED MGSA FRAMEWORK

Based on the traditional AED architecture and the theo-
retical analysis in Section III, we now present the proposed
MGSA framework, which consists of an alignment attention
based encoder-decoder design and a post-inference process.

A. Attention based encoder-decoder design

For brevity, we choose two categories, the subword y® and
the character y¢, corresponding to the target sequences y* and
y7, respectively, Lo introduce the proposed MGSA method. For
a set of speech utterances parameterized into feature vector
x, we use y® and y° to represent the true subword and true
character label sequence, respectively. The proposed MGSA
framework is shown in Fig. 4. The encoder produces a high-
level representation encoded in the continuous vector &, and
the decoder generates subword predictions yf by choosing the
relevant elements of hidden state at the t¢-th time step. To
explain this, we take the generation of the subword token (e.g.,
“SE” in Fig. 4) at the t-th step as an example. To calculate
the subword prediction, the character sub-sequences y(ct_l,:) =
(Yf—115++Y§_1x,_,)» Which correspond to the subword at
the previous step, have to be provided. In Fig. 4, the character
predictions at step (¢t — 1) consist of {“O”, “U”, “R”}.

For the u-th token in the character sub-sequence y(, , ),
first we perform the state update and attention alignment. In
detail, the decoder updates the current state s; ; , based on
the output from the previous character step using

Sf—l,u — RNN(Sg—l,u—layzf—Lu—l)? (13)

where RNN represents a recurrent neural network (RNN)
layer. The decoder state s;_, ,, together with af_, ,,_; are then
provided for calculating the current alignment score oy_q ,,.
Due to the monotonicity of alignment in ASR, we use location-
based attention in this work [5],

(gtc—l,u7 ag—l,u) — Attend(sg—l,uv ag—l,u—la j)v (14)
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Fig. 4. The proposed MGSA framework for predicting the word “_COURSE”,
showing the encoder module, two decoder modules (one for subwords, and
one for characters), and three attention mechanisms — where the interaction
attention ai is omitted for simplification. The decoder process for subwords
and characters is alternately performed. FC and @) represent a fully connected
layer and element-wise multiplication respectively. Dash-dotted lines denote
a copy-and-paste operation.

where the Attend module returns the most generic attention.
For output character prediction, the decoder re-updates its
state based on the obtained glimpse vector g;_ , using

Si—1,u ¢ RNN(S{_1 05 61 1,0)- (15)

The obtained character state s;_ ,, is then applied to produce
the prediction of y;_, ,,, which is given by

(Y 1ul8T 100 81-2) = softmax(W[s 55 o)), (16)
when the transition function in (11) is used, or given by

P(Yi-1,ul80-1,0) = softmax(Wesi_, 1), (17)

when the simplified transition function in (12) is used. Note
that the matrix W can be trained in practice, and the bias
variable in the fully connection (FC) layer is omitted for
simplicity. This iterative procedure will be terminated when
the predictions for all tokens in yft_l.’:) are obtained.

Given the prediction yftfl,:), the subword decoder is there-
fore triggered to predict the t-th subword. Let the decoder
state of the latest character be denoted by sj ; ,  , which
contains the history token of the character sequence s;_. For
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the subword prediction, it consists of two steps: 1) updating
the decoder state following

st ¢ RNN(s{_1,9¢-1)s (18)
and 2) calculating the attention vector using
(g%, ab) < Attend(s?, ol |, ®). 19)

The difference from the character attention lies in that the
attention weight and glimpse vector included in the subword
attention are denoted by o} and g?, respectively.

Unlike the traditional AED structure, in order to model the
effects of the character state s;_; on the subword prediction,
we use an interaction module, which consists of one attention
mechanism and two RNN layers. With respect to the interac-
tion module, combining the previous subword token 3°_; and
the character decoder state s;_; results in the interactive state
st, which is given by

s; < RNN(s{_1, 57 1), (20)

as the output of an RNN layer. The state s; is then used to
calculate the interaction attention as

(g1, 07) < Attend(si, ap_y, 3). @

Using s! as a query vector, the interaction attention enables
to extract the interactive glimpse g¢, which might contain a
certain amount of complementary information with respect
to g°. By including the interaction module, the proposed
model contains three attention mechanisms: character (14),
subword (19) and interaction (21) attention.

The subword state s? is the combination of the previous
subword state s?_; and the history output token y?_;, while
the character state s{ is the integration of character state s{_;
and y?_;. Due to the fact that s? and s¢ occur at the same time
step, the final prediction can be refined through state fusion,
e.g., the gated linear unit (GLU) [33] as

f=o(FC(s})) + sy, (22)

where o(-) represents a sigmoid activation. Next, the interac-
tive state is updated by

sy < RNN(f{, gf). (23)

Given the fusion variables ff, we can further apply an RNN
layer to update the interdecoder state using the interactive
glimpse vector gi.

Finally, the interactive decoder state s% is used to estimate
the primary subword output p(j! |si) of the t-th time step,
which is given by

p(ijl|s}) = softmax(W'sl), (24)

Apart from the primary output, sf can be applied to simulta-
neously obtain a secondary subword output p(7?|s?), which is
given by

p(72]s2) = softmax(W°s?). (25)

Note that both the matrices W and W? can be trained in
practice. The operations in (18)—(25) constitute the complete
decoding process for the ¢-th subword token. In combination
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Fig. 5. An example of the MGSA subword token prediction at time step ¢,
consisting of four blocks highlighted using different colours.

with the calculation of character sub-sequences, which corre-
sponds to the subword at time step (¢t — 1), we can obtain the
whole decoding process for time step ¢. The proposed decoder
module i.e., (13)—(25), is named by interdecoder. When (16) is
used for character classification, the decoder module is called
bi-interdecoder; when the simplified version (17) is used, it
is termed by uni-interdecoder. In both cases, the interdecoder
can simultaneously generate three types of output: the char-
acter sub-sequence g(ct_lyz), the primary subword 37;[ and the
secondary subword 7°. Considering the prediction for one
training sequence, the frame-level cross entropy (CE) based
loss function can therefore be formulated as a summation of
three components, i.e.,

T ke

Loss = Z Z LCE(y;u? g;u)

t=1u=1

T T
+ ZLCE(Z/?, QZ) + )‘Z LCE(yl?agft))v

t=1 t=1

(26)

where A € [0,1] is a balancing hyper parameter, and the first
two terms refer to the losses of character and subword targets,
respectively, while the third term guides subword attention.
In summary, the proposed MGSA approach for the subword
prediction at the ¢-th step can be structured into four parts: (a)
a char block for generating the prediction of the character
sub-sequence at step (¢t — 1), in which the character decoder
state s;_; is estimated, (b) a subword state block to update
the hidden state s? of the subword decoder and calculate the
corresponding attention vector a%’, (c) an interaction block to
fuse the decoding states s? and s§_; by a GLU and to calculate
attention score ozi and content vector g,ﬁ, and (d) a subword
classification block for predicting the subword under the
utilization of the interactive states si. The complete structure,
including interconnection between blocks, is depicted in Fig. 5.

B. Post-inference

From the description of the proposed MGSA framework,
it is clear that the interdecoder module can utilize both the
subword and character-level historical tokens for prediction,

2329-9290 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution rec*uires IEEE permission. See http://www.ieeeorg/]{aublicationsﬁstandards/gublications/ri hts/index.html for more information.
Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on August 14,2021 at 11:16:34 UTC from IEEE Xplore. Restrictions apply.



2329-9290 (c) 2021 IEEE. Personal use is permitted, but r

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2021.3101921, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

eg : "ALSO SINCE MILITARY CONTRACTS ... !
beamsize = 2

P(f’gﬂ)

pob [ rot

Fig. 6. The proposed post-inference algorithm, consisting of Predict, Verify
and Crop blocks.

while the traditional decoder only uses subword history infor-
mation. The proposed interdecoder is capable of alignment
mapping, which can also be exploited for the end-to-end
inference stage. Based on this alignment mapping information,
we propose a post-inference algorithm for the final inference.
For the inference at the ¢-th step, in case a candidate output
7P is obtained, the corresponding sub-sequence g(ctﬁ) can be
determined. For instance, given a subword candidate output
“SE”, the character sub-sequence will be “S E”. The sub-
sequence can then be used to cross verify the candidate output.
The inference in the end-to-end ASR is performed by syn-
chronous output-label decoding using beam search [18]. The
decoder computes the score for each remaining hypothesis,
which is defined as the logarithmic probability, given by

Y’ = arg max log p(9'|x)

gieu

= argmax » _logp(§j|§i_,, z) 27
grteu i

(28)

1 ape; i)
= argmax 5 > logp(3;15;-1) + log p(#;|7;_1)
yre ¢

1 i o
= argmax 5 g p(G{lFi_1) +1og p(F, 1T, 1)) 29)
gieu 2% ’ '

1 i o
= argmax 5 > logp(#[G;-1) + log (] [ p(#. |5 1))
t u
(30)

where the variable x is omitted for clarity in (28, 29, 30).
Note that (28) is obtained by dividing each element in the
summation of (27) into two equal parts, and (29) is obtained
by introducing the score of the character subsequence into the
inference (if two subword units obtain a comparable score,
their character subsequences are more likely to be different).
Finally, (30) is obtained by expanding the probability function
p(’(}(]t,) |g€t—1,:) )

Moreover, the proposed post-inference algorithm can be eas-
ily generalized into other end-to-end models, since only multi-
granularity prediction probabilities are required. An illustrative
example of predicting the subword and character, g}; and gcm
is shown in Fig. 6, which consists of three blocks: Predict,
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(a)
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Fig. 7. The use of multi-granularity target information in (a) post-inference
using g{ ) OF inference (the yellow font). and (b) the interdecoder, utilizing

only the past sub-sequence y{ 1,9 for modeling (green font).

Verify and Crop. In the Predict block, the subword decoder
calculates the candidate output prediction gf at time step t.
In Verify, the candidate subword fgf; is uniquely matched to
one character sub-sequence ¥f, ., = (U1 Ufy,)s and the
probability of generating sub-sequence gjft’:) is calculated. As
such, the candidate hypotheses of subwords can be verified
and rectified instead of generating new hypotheses. The Crop
block refines the likelihood score by excluding outliers that
have a much lower score.

Note that both post-inference and the interdecoder module
use the alignment mapping information, but at different phases.
The difference in the context of decoding y; is illustratively
explained in Fig. 7. For post-inference, the subsequence y{ )
can be further applied to verify and rectify the predicted
output in Fig. 7(a), while the history output token of time step
(t — 1) is used in the interdecoder module in Fig. 7(b). It is
clear that the alignment mapping is exploited at different time
steps. Therefore, the proposed MGSA end-to-end model, by
using the post-inference algorithm during the inference stage,
exploits alignment mapping information from both the current
and previous time steps.

V. PERFORMANCE EVALUATION

In order to validate the effectiveness of the proposed inter-
decoder module and post-inference algorithm, we evaluate the
ASR performance in terms of the word error rate (WER) on
WSJ-80hrs and Switchboard-300hrs for various systems.

The WSJ database contains 80 hours of transcribed speech.
In this work, we follow the standard division, i.e., si284 for
training, dev93 for validation and eval92 for evaluating the
WER. The Switchboard corpus consists of a large amount
of English language telephone speech. We choose the 300
hour subset LDC97S62 for training, reserving 10% for cross
validation. The Hub5 eval2000 (i.e., LDC2002S09) is chosen
for performance evaluation, consisting of two subsets: 1)
Switchboard (similar in style to the training set) and 2)
CallHome, collected from conversations between friends and
within families. The complete Hub5 eval2000, the subsets

estrictions apply.
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Switchboard and CallHome are denoted “Full”, “SWD” and
“CHE”, respectively, For completeness, we also evaluate the
ASR performance on the RT03 Switchboard test set (i.e.,
LDC2007S10).

The encoder used for both corpora has two convolutive
layers, which down-sample the sequence in time, with 3x3
filters and 32 channels, followed by 6 layers of bi-directional
long short-term memory (LSTM) with a cell size of 800. The
default decoder is a two-layer uni-directional LSTM with 800
cells. We use 80-dimensional log-mel filterbank coefficients,
three pitch coefficients and the normalized mean and variance
as the input features. The character target in experiments is a
set of 51 characters, which contain English letters, numbers,
punctuation and special transcribed notations for WSJ, and
46 characters for Switchboard. For the subword target, we
perform segmentation using SentencePiece?, which is based on
the byte pair encoder algorithm. Based on [34] and the default
setting in ESPnet, we use a vocabulary of size around 500 and
2000 for WSJ and Switchboard, respectively. ESPnet [35]
and Pytorch [36] are used throughout experiments. As spec-
augmentation and label-smoothing are included in ESPnet,
they are applied in this work. For fair comparison, language
model re-scoring, auxiliary output in the process of decoding
or pre-training strategy is not applied.

During model learning, the CE is optimized using
AdaDelta [37] with gradient clipping [38], where the hyper
parameter A is set to be 0.2. We also apply a uni-gram label
smoothing technique [39] with a probability of p = 0.05
to avoid over-confident predictions. For the beam search
algorithm, the beam size is set to be 20. We compare several
variant systems, including:

« Baseline: following the commonly-used training crite-
ria, which is the basis of all other extended systems.

« Baseline+: the baseline extended by cascading one ad-
ditional bi-directional RNN layer for the encoder module
to eliminate the effects of model size.

o MultiTask: using the multi-task learning strategy for
multi-granularity modeling, which includes one shared
encoder module and two separate decoder modules. Note
that the MultiTask system ignores the interaction between
target sequences.

e MGSAL;: uses the bi-interdecoder based on (10) and
(11) to incorporate interaction between multi-granularity
target units. This considers multi-granularity information
for both character and subword predictions.

¢ MGSA,,;: consists of a conventional encoder module
and a uni-interdecoder module. It thus only incorporates
multi-granularity information for subword prediction.

It is worth noting that in [32], by introducing multi-stage
pre-training, speed perturbation, RNN-transducer the ASR
performance is significantly improved, while it also requires
more training time and makes the model more complicated.
In general, the more strategies that are used, the more training
time will be consumed and the more complicated the model.
In order to focus on the impact of multi-granularity alignment
mapping on the ASR performance, we therefore ignore similar

Zhttps://github.com/google/sentencepiece

TABLE I
WSJ DATASET WER WHEN CONSIDERING SUBWORD, CHARACTER,
AND/OR BOTH AS LABELS.

Model Label Unit dev93  eval92

Baseline char 15.6 11.9
subword 14.2 11.1

Baseline+ subword 14.1 10.9

MultiTask both 13.8 10.6

MGSAy; both 13.7 10.2

MGSA i both 12.9 9.6

TABLE II

SWITCHBOARD-300HRS DATASET WER WHEN CONSIDERING SUBWORD,
CHARACTER, AND/OR BOTH AS LABELS.

eval2000

Model Label Unit  Dev RTO03
SWB CHE Full

Baseline char 15.6 247 11.0 179 21.2

subword 15.1 23.0 11.5 17.3 20.7
Baseline+ subword 159 230 124 177 21.0
MultiTask both 144 219 11.3 16.8 19.4
MGSAy; both 14.5 21.3 11.0 16.2 19.2
MGSA jni both 13.7 204 10.3 154 18.4

potential strategies in the implementation of MultiTask and
Baseline for fair comparison.

A. Results and discussions

1) Evaluation of the model structure: In order to analyze
the effect of the model structure on performance, we first
consider the traditional beam search algorithm at the inference
stage for all comparison methods. Table I lists WERs achieved
on two validation sets. The WER for character and subword
baselines in eval92 are 11.1% and 11.9%, respectively. Clearly,
compared to Baseline, the MultiTask approach can improve
the performance by 0.6%, and compared to Baseline+, a
reduction in WER by 0.3% is obtained. This implies that using
multiple target information is more beneficial for improving
the performance than considering more model parameters.
Comparing MGSA ;;; and MGSA},; with MultiTask or the
single-granularity baselines, we see that the alignment map-
ping in the decoder module is indeed helpful to improve
the performance. As the performance of MGSAy,; is worse
than that of MGSA,,; (e.g., 10.2% vs 9.6%), the bi-lateral
transmission over multi-granularity units does not achieve a
performance gain. Note that the major difference between
these two models lies in the transition function (e.g., (11) for
MGSAy; and (12) for MGSA ;). The former has to further
load the subword state for the prediction of character tokens,
resulting in a more complicated structure. Due to the fact
that the bi-lateral interaction increases the correlation between
two sequences and reduces the fault tolerant ability during
inference, the exposure bias problem becomes more serious
as opposed to the uni-lateral counterpart or MTL. These lead
to that MGSAy,; cannot outperform MGSA,,; in general.

Similarly, we next evaluate the ASR performance on the
Switchboard-300hrs corpus, which is much larger than WSJ.
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TABLE III
THE WERS OF MGSA ;,; AND MultiTask WITH/WITHOUT
POST-INFERENCE ON THE WSJ DATASET.

Model Label Unit dev93  eval92

MultiTask both 13.8 10.6

+ post-inference 13.4 10.1

MGSA ni 12.9 9.6

+ post-inference both 12.4 8.9
TABLE IV

THE WERS OF MGSA ;,; AND MultiTask WITH/WITHOUT
POST-INFERENCE ON THE SWITCHBOARD DATASET.

eval2000

Model Label Unit  Dev RTO3
SWB CHE Full
MultiTask both 144 219 113 168 19.4
+ post-inference 133 206 10.6 156 18.4
MGSA yni both 13.7 204 103 154 18.4
+ post-inference 12.8 19.3 10.1 14.7 17.6

The results are shown in Table II. Clearly, the proposed
MGSA ;i reduces the WER by 1.4% and 1.9% compared to
MultiTask and Baseline on the eval2000 dataset, respectively.
For RT03, MGSA,,; yields a reduction in WER of 1.0%
and 1.7% compared to MultiTask and Baseline, respectively.
In line with the WSJ results, MGSA}; cannot work better
than MGSA ;. We see that, for both WSJ and Switch-
board corpora, MGSA ,;; outperforms its bi-lateral counterpart
MGSA};. We will therefore only select the former for further
comparisons. In fact MGSA,;,; has another advantage in that
the prediction for all character sequences can be calculated
simultaneously, and the parameters characters need to provide
for the corresponding subword can be extracted all at once.

2) Evaluation of the proposed post-inference: As the multi-
granularity target not only affects the model structure, but
also the inference, we therefore experimentally evaluate the
impact of applying the proposed post-inference algorithm at
the inference stage. For notational brevity, in the following the
MGSA,; and MultiTask plus post-inference will be denoted
by MGSA 3+ and MultiTask+, respectively.

The performance on the WSJ dataset is shown in Table III.
We see that, compared to MGSA ,;;, MGSA,,;+ reduces the
WER from 9.6% to 8.9% on eval92. MGSA ,;+ performs bet-
ter than MultiTask+, so the proposed interdecoder is clearly
beneficial. Results on the Switchboard dataset are shown in
Table IV. Similarly, the proposed MGSA .+ approach also
further reduces the WER by 0.7% on eval2000 and by 0.8%
on RTO3.

As the application of the proposed post-inference is not
restricted by the end-to-end structure, we therefore further
show the performance of MultiTask+ on the WSJ dataset in
Table III and on the Switchboard dataset in Table IV, respec-
tively. Due to the use of the post-inference algorithm, the WER
of MultiTask can be reduced by 0.5% on WSJ compared
to the original MultiTask method, and the average reduction
in WER turns out to be 1.2% on Switchboard. Hence, we
conclude that the proposed post-inference is able to further

improve the ASR performance. Notably, the improvement
for MGSAyn; is higher than for MultiTask. This is due to
the fact that the alignment mapping information contained in
the multiple granularities is taken into account in the former
but not the latter. Since MGSA;+ achieves a performance
gain with respect to MGSA ,,;, which is sightly smaller than
the improvement obtained by MultiTask+ over MultiTask,
we can conclude that the performance gains obtained by
separately using interdecoder and post-inference may be partly
complementary.

B. Visualization and complexity analysis

In this section, we will visualize the results of the compar-
ison methods and compare the time complexity.

1) Visualization: The proposed MGSA ,;,; method includes
three attention modules: subword af, interaction o and
character af,. To analyze their functions, we visualize the
alignment variables using the WSJ and Switchboard datasets
in Fig. 8. The first three rows plot heatmaps of subword a?,
the interaction o} and the character alignments o, with the
plots in the left column being from WSJ and from Switchboard
in the right column. The black dashed lines in Figs. 8(a) and
(b) represent the estimated central position of the subword
attention ozf, and similarly in Figs. 8(e) and (f). As with the
representation of yct’: , we convert the attention vector ag,
into a(ct):), and plot the boundary position using red dashed
lines in Figs. 8(c) and (g). Comparing Fig. 8(b) to (c) (or
Fig. 8(f) to (g)), it is obvious that the attention locations
of the character af, ) and the subword ab are different. In
Figs. 8(a) and (b) (or Figs. 8(e) and (f)), the central positions
are also different. As the attention distributions of character
and subword fluctuate around the ground truth boundary, the
subword attention score and character attention score are not
aligned in time domain’®. Thus, it is reasonable to exploit
more abundant intermediate representations from the encoder
module for the prediction and fuse the subword and character
vectors, say g, gf and g(ct7:), to complement the alignment. In
Figs. 8(a) and (b), we can see that the entropy of the interaction
alignment ! is lower than that of the subword o (e.g.,
0.905 vs 1.311). As a more comprehensive illustration, we
plot the entropy in terms of epochs for the subword alignment
scores of Baseline, MultiTask and MGSA,,;;; in Fig. 8(d).
We observe that the entropy of the interaction alignment score
al is the lowest, which decreases rapidly and converges after
several epochs. This is due to the fact that the interaction
module contains history information from both subword and
character. The more history information contained in o, the
more accurate the prediction will be. Hence, we conclude that

3blueThis misalignment might be caused by 1) the presented speech
recognition systems, which are based on the attention mechanism, are not
strictly aligned, and the alignment effect of the attention mechanism is
different from real text boundaries; 2) the context modeling ability in the
encoder module weakens the differences between adjacent frames, so a certain
amount of effective information can also be obtained even if the alignment
position is different from the ground truth; and 3) as the voicelessness or
coarticulation is more obvious on character than on subword, the requirements
of acoustic information for character classification and subword classification
are different. Different requirements in acoustic information between character
and subword may result in difference alignment distributions.
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Fig. 8. Visualization and analysis of the attention for the AED-based approaches, where the subplots in the left column are obtained from the WSJ dataset
and those on the right from Switchboard: (a) and (e) plot the alignment attention score, (b) and (f) plot the subword attention score, (c) and (g) plot the
character attention score, and (d) and (h) plot the entropy of different attention weights across epochs. For simplicity, we use ‘tr’ and ‘dev’ to denote training

and validation datasets, respectively.

the combination of history subword and character is indeed
helpful for optimizing the alignment vectors. Similar results
can be seen for the Switchboard dataset in Fig. 8(h). Note that
compared to WSJ, Switchboard entropies converge faster, due
to the fact that it contains more training data, leading to more
model updates possessed at each epoch.

2) Time complexity: The normalized processing time for
both training and inference stages of the MGSA,,; and
MultiTask methods on the WSJ and Switchboard datasets
with respect to Baseline are shown in Table V. It is clear that
for both training and inference stages, both MultiTask and the
proposed MGSA ;,; method consume a longer time on both
datasets compared to the Baseline method. Incorporating the
post-inference algorithm for both MultiTask and MGSA p;
increases the time complexity. This is due to the fact that
the post-inference requires an extra mapping transformation
between multi-granularity units, resulting in more calculations

Authorized licensed use limited to:

TABLE V
THE NORMALIZED TRAINING AND INFERENCE TIME CONSUMPTION OF
THE COMPARISON METHODS ON THE WSJ AND SWITCHBOARD DATASETS
WITH RESPECT TO THE BASELINE METHOD.

Training Time Inference Time

Model

WSJ Switchboard WSJ Switchboard
CDS 25 3.6 2.5 3.6
MultiTask %x1.00 x1.00
+ post-inference x1.44 x1.74 x1.80 X 2.36
MGSA ni x1.89 x2.45
+ post-inference x1.58 x1.97 x1.89 X2.45

for character sub-sequences. The decoding time of MGSA
and MGSA ,,;+ is the same, because the information required
by the post-inference algorithm is already calculated by the
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interdecoder. In other words, the sequence alignment infor-
mation and the corresponding character sub-sequence are the
output of the char block of the interdecoder module, and the
former can be directly applied to post-inference. The time

1

TABLE VI
COMPARISON TO OTHER END-TO-END CE-BASED ASR SYSTEMS
(WITHOUT LANGUAGE MODEL RE-SCORING) ON WSJ-80HRS.

- | ; - T Model Label Unit  dev93  eval92
consumption of the post-inference algorithm is thus negligible,

. . . . . LS [39] char 13.7 10.6
effectively provided for free. In addition, the time complexity 0CD [40] char _ 93
of MGSA i+ is only slightly higher than that of MultiTask+. PAPB [42] char - 10.6
Therefore, we can conclude that the performance gain of the EPAM [34] char 140 106

.. Espresso [41] char 14.8 12.1
proposed MGSA ,,;+ method is improved at the cost of a small
increase in time consumption. In Table V, we notice that for II;/EIS?NEA‘[? ” :EEI’NVS;S | 8 s 19566
MGSA ;i and MultiTask+ methods, both the training time : i i

. . . . Baseline both 142 11.1
and inference time are different for the two datasets. This MultiTask both 138 106
is caused by the segmentation fineness of subwords on the MultiTask+ both 13.4 101
corpus. For analysis, we also give the average character density MGSAuni+ both 12.4 8.9
of subword (CDS) in the two corpora and use CDS to measure
the segmentation fineness of subwords in Table V. It is obvious TABLE VII

that the CDS differs significantly between the two datasets, and
the time consumption is strongly dependent on the CDS.

COMPARISON TO OTHER END-TO-END CE-BASED ASR SYSTEMS ON
SWITCHBOARD-300HRS.

, Model Label Unit eval2000 RTO3
C. Comparison to state-of-the-art systems SWB CHE Full
Finally, we compare the proposed MGSA method to state- EPAM [34] char 101 225 163 -
of-the-art granularity-based end-to-end ASR systems. Note LAS-IF-sMBR [45] char 122233 177 -
that in order to focus on the attention-based model without Espresso [41] subword 107 207 157 -
introducing complicated training strategies, e.g., CTC, RNN- Pre-training [46] subword 1.9 237 117 -
tranducer, some results, such as [32], are excluded. Also, SpecAugm(w/o) [47]  subword 112 216 164 i
note that the provided results can be further improved as Baseline both 15230 173 207
. . licated confi . . 32 Table VI MultiTask both 11.3 21.9 16.8 19.4
using a more complicated configuration in [32]. able V MultiTask+ both 106 206 156 184
and Table VII show the performance and the granularity unit MGSA i+ both 101 193 147 176

(e.g., character, subword, both) of different approaches using
WSJ-80hrs and Switchboard-300hrs, respectively. Comparing
with the optimal completion distillation (OCD) based Sabour
method [40] which uses character units, or the Espresso
baseline [41], we can conclude that the utilization of multi-
granularity units and the proposed post-inference algorithm is
more robust than optimizing exposure bias. For both datasets,
the proposed MGSA,,;+ method achieves the best perfor-
mance. From both tables, it is obvious that multi-granularity
based approaches (i.e., MultiTask, MultiTask+, MGSA,;
and MGSA ,,;+) outperform single-granularity based methods,
implying that the utilization of multiple granularity informa-
tion can improve the performance of end-to-end ASR systems.
On the WSJ dataset, the character-based methods in general
outperform subword-based approaches, while for Switchboard
the latter work better. The choice of optimal single granularity
for the design of ASR systems is thus dataset dependent.

VI. CONCLUDING REMARKS

In this work, we proposed a multi-granularity sequence
alignment approach for the AED-based ASR, which exploits
the alignment mapping between different granularity units
for both modeling and inference stages. By leveraging the
dependency and interaction between multi-granularity target
sequences, the interdecoder based framework can improve the
ASR performance. The proposed post-inference algorithm can
improve the performance significantly at the cost of a small
increase in the time consumption. We found that the one-
way interaction in the interdecoder module works better than

the bi-lateral counterpart. In general, the utilization of more
intermediate speech representations and sequence alignment
mapping information is beneficial for ASR. As only two target
units (e.g., character and subword) are taken into account in
this work, we will consider more granularities in the future. We
will also optimize the combination of multiple granularities
and explore the application of the proposed MGSA method
to other end-to-end ASR frameworks, e.g., transformer. In
the future, we will consider the generalization capability of
the proposed method using a larger-scale dataset (e.g., with
thousands hours of training data) and the application to other
languages, e.g., Chinese.
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