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ABSTRACT

This paper presents a novel semi-supervised end-to-end automatic
speech recognition (ASR) method that employs consistency training
with the use of unlabeled data. In consistency training, unlabeled
data can be utilized for constraining a model such that it becomes
invariant to small deformation. In fact, considering consistency can
make the model robust to a variety of input examples. While pre-
vious studies have applied consistency training to primitive classifi-
cation problems, no studies have employed consistency training to
tackle sequence-to-sequence generation problems including end-to-
end ASR. One problem is that existing consistency training schemes
cannot take sequence-level generation consistency into considera-
tion. In this paper, we propose a sequence-level consistency train-
ing scheme specialized to handle sequence-to-sequence generation
problems. Our key idea is to consider the consistency of the gener-
ation function by utilizing beam search decoding results. For semi-
supervised learning, we adopt Transformer as the end-to-end ASR
model, and SpecAugment as the deformation function in consistency
training. Our experiments show that our semi-supervised learning
proposal with sequence-level consistency training can efficiently im-
prove ASR performance using unlabeled speech data.

Index Terms— semi-supervised learning, end-to-end automatic
speech recognition, sequence-level consistency training, Trans-
former, SpecAugment

1. INTRODUCTION

In the automatic speech recognition (ASR) field, there has been
growing interest in achieving end-to-end ASR systems that directly
convert the input speech into text. While traditional ASR systems are
built on noisy channel formulations using several component mod-
els (i.e., an acoustic model, a language model, and a pronunciation
model), end-to-end ASR systems can learn the overall conversion in
one step without any intermediate processing.

Recent studies have introduced various modeling methods in-
cluding connectionist temporal classification [1, 2], recurrent neu-
ral aligner [3], recurrent neural network (RNN) transducer [4], and
RNN encoder-decoder [5–8]. In particular, Transformer-based mod-
eling methods have shown the most powerful performance in recent
studies [9–13]. In addition, a couple of effective training techniques
specific to sequence-to-sequence learning have been presented [14].
In particular, SpecAugment, which augments input acoustic feature
representations through time warping, time masking, and frequency
masking, has yielded significant performance improvements [15].

One main problem with end-to-end ASR systems is that labeled
data (speech-to-text paired data) is essential to carry out end-to-end
optimization. However, it is difficult to form large labeled data sets
in practical use cases. To mitigate this problem, semi-supervised

learning that utilizes not only labeled data but also unlabeled data is
being examined. The currently dominant semi-supervised learning
approaches use text-to-speech networks or sequential auto-encoder
networks [16–21]. These additional networks are often utilized for
considering speech chain modeling [16], back-translation modeling
[17,18], reconstruction modeling [19–21] and so on. However, these
methods demand the joint construction of additional networks with a
main end-to-end ASR model. This often creates difficulties in semi-
supervised learning.

In order to achieve much simpler semi-supervised learning, we
focus on consistency training [22–25]. The main strategy of con-
sistency training is to constrain the classification model so that it
becomes invariant to small deformation. In semi-supervised learn-
ing, the model is trained so that the classification results for an
unlabeled input are constant even if small deformation is added
to the input. It is known that considering consistency can create
a model that is robust to various input examples. While above
semi-supervised learning methods require additional modules, con-
sistency training dispenses with them other than a main classification
model. While previous studies have applied consistency training to
primitive classification problems such as image classification and
text categorization, no study has introduced consistency training
to sequence-to-sequence generation problems including end-to-end
ASR. In fact, existing consistency training schemes cannot take
sequence-level generation consistency into consideration.

In this paper, we propose sequence-level consistency train-
ing specific to handling sequence-to-sequence generation prob-
lems. Sequence-level consistency training is inspired by sequence-
level knowledge distillation, a teacher-student learning method for
sequence-to-sequence generation problems [26–28]. Unlike conven-
tional consistency training, sequence-level consistency training can
consider the consistency of the generation function. In our semi-
supervised learning proposal, we first construct a teacher end-to-end
ASR model from labeled data. Next, we train a student end-to-end
ASR model from both the labeled data and unlabeled data. We
train the student end-to-end ASR model so that generation results
of the unlabeled data using the student model are consistent with
those using the teacher model even if the data are slightly deformed.
The generation consistency can be taken into consideration by uti-
lizing beam search decoding results of the unlabeled data. Our
semi-supervised learning can be leveraged in two applications. One
is unsupervised data augmentation where the target domain data
consists of both labeled and unlabeled data [25]. The other is unsu-
pervised domain adaptation where labeled source domain data and
unlabeled target domain data are used [29]. In this paper, we adopt
Transformer as the end-to-end ASR model, and SpecAugment as
the deformation function in consistency training.

Experiments on a corpus of spontaneous Japanese [30] show
that our proposal, semi-supervised learning based on sequence-level
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consistency training, can improve ASR performance using unlabeled
data in both unsupervised data augmentation and unsupervised do-
main adaptation conditions.

2. TRANSFORMER-BASED END-TO-END AUTOMATIC
SPEECH RECOGNITION MODEL

This section briefly describes end-to-end ASR using a Transformer
based auto-regressive generative model [9–13]. This model pre-
dicts the generation probability of text W = {w1, · · · , wN} given
speechX = {x1, · · · ,xM}, where wn is the n-th token in the text
and xm is the m-th acoustic feature in the speech. N is the number
of tokens in the text and M is the number of acoustic features in
the speech. Auto-regressive generative models define the generation
probability ofW as

P (W |X;Θ) =

N∏
n=1

P (wn|W1:n−1,X;Θ), (1)

where Θ represents the model parameter sets and W1:n−1 =
{w1, · · · , wn−1}.

2.1. Network structure

In our Transformer-based end-to-end ASR model, P (wn|W1:n−1

X; Θ) can be computed using a speech encoder and a text decoder,
both of which are composed of a couple of Transformer blocks. The
model parameter sets are split into those for the speech encoder, θenc,
and those for the text encoder, θdec.
Speech encoder: The speech encoder converts input acoustic fea-
tures into hidden representationsH(I) using I Transformer encoder
blocks. The i-th Transformer encoder block composes i-th hidden
representations H(i) from the lower layer inputs H(i−1) as indi-
cated by

H(i) = TransformerEncoderBlock(H(i−1);θenc), (2)

where TransformerEncoderBlock() is a Transformer encoder
block that consists of a scaled dot product multi-head self-attention
layer and a position-wise feed-forward network [9]. The hidden
representationH(0) = {h(0)

1 , · · · ,h(0)

M′} is produced by

h
(0)

m′ = AddPostionalEncoding(hm′), (3)

where AddPositionalEncoding() is a function that adds a con-
tinuous vector in which position information is embedded. H =
{h1, · · · ,hM′} is produced by

H = ConvolutionPooling(x1, · · · ,xM ;θenc), (4)

where ConvolutionPooling() is a function composed of convo-
lution layers and pooling layers. M ′ is the subsampled sequence
length, which depends on the function.
Text decoder: The text decoder computes the generation probability
of a token from preceding tokens and the hidden representations of
the speech. The predicted probabilities of the n-th token wn are
calculated as

P (wn|W1:n−1,X;Θ) = Softmax(u
(J)
n−1;θdec), (5)

where Softmax() is a softmax layer with a linear transformation.
The input hidden vector u(J)

n−1 is computed from J Transformer de-
coder blocks. The j-th Transformer decoder block composes j-th

hidden representation u(j)
n−1 from the lower layer inputs U (j−1)

1:n−1 =

{u(j−1)
1 , · · · ,u(j−1)

n−1 } as

u
(j)
n−1 = TransformerDecoderBlock(U

(j−1)
1:n−1,H

(I);θdec), (6)

where TransformerDecoderBlock() is a Transformer decoder
block that consists of a scaled dot product multi-head self-attention
layer, a scaled dot product multi-head source-target attention layer,
and a position-wise feed-forward network [9]. The hidden represen-
tation U (0)

1:n−1 = {u(0)
1 , · · · ,u(0)

n−1} is produced by

u
(0)
n−1 = AddPositionalEncoding(wn−1), (7)

wn−1 = Embedding(wn−1;θdec), (8)
where Embedding() is a linear layer that embeds an input token into
a continuous vector.

2.2. Supervised learning

In end-to-end ASR, a model parameter set can be optimized from
the utterance-level labeled data (speech-to-text paired data) as

Dpair = {(X1,W 1), · · · , (XT ,W T )}, (9)

where T is the number of utterances in the training data set. The ob-
jective function based on maximum likelihood estimation is defined
as

Lmle(θenc,θdec) = −
T∑

t=1

Nt∑
n=1

logP (wt
n|W t

1:n−1,X
t;θenc,θdec), (10)

where wt
n is the n-th token for the t-th utterance and W t

1:n−1 =
{wt

1, · · · , wt
n−1}. N t is the number of tokens in the t-th utterance.

In addition, we can apply SpecAugment, which augments su-
pervised learning with input acoustic feature representations [15]. It
consists of three kinds of deformations: time warping, time mask-
ing, and frequency masking. Time warping is deformation of input
acoustic features in the time direction. Time masking and the fre-
quency masking mask a block of consecutive time steps or frequency
channels, respectively. An objective function using SpecAugment is
defined as

Lsa(θenc,θdec) = −
T∑

t=1

Nt∑
n=1

logP (wt
n|W t

1:n−1,G(Xt);θenc,θdec), (11)

where G() is the SpecAugment deformation function with random
behavior for the input acoustic features.

3. SEMI-SUPERVISED LEARNING BASED ON
SEQUENCE-LEVEL CONSISTENCY TRAINING

This section details sequence-level consistency training for semi-
supervised end-to-end ASR models. Our semi-supervised settings
assume that two kinds of data can be used for building end-to-end
ASR models. One is labeled data as defined in Eq. (9). The other is
unlabeled data,

Dunpair = {XT+1, · · · ,XT+L}, (12)

where L is the number of utterances in the unlabeled data set. Our
semi-supervised learning is conducted in teacher-student training
style. The training steps are follows.
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Fig. 1. Semi-supervised learning based on sequence-level consis-
tency training.

1. A teacher model is trained via supervised training using
Dpair. Model parameter sets of the teacher model are de-
fined as ΘTM = {θTMenc,θTMdec}. An objective function using
SpecAugment is defined as

L(θTMenc,θ
TM
dec) = Lsa(θ

TM
enc,θ

TM
dec). (13)

The teacher model performs the role of assigning sequence-
level generation probabilities of ASR results to the unlabeled
data.

2. The student model is trained via semi-supervised learning us-
ing both Dpair and Dunpair. Model parameter sets of the stu-
dent model are defined as ΘSM = {θSMenc,θSMdec}. An objective
function for the semi-supervised learning is defined as

L(θSMenc,θ
SM
dec) = (1−λ)Lsa(θ

SM
enc,θ

SM
dec)+λLsc(θ

SM
enc), (14)

where Lsc is the sequence-level consistency loss and λ is
the hyper parameter to adjust the influence of the consistency
loss. Note that we use the consistency loss only in learning
the encoder network so that targets estimated by the teacher
network do not adversely affect the decoder network.

Figure 1 shows the procedure of semi-supervised learning based on
sequence-level consistency training. In the following subsections,
we detail the sequence-level consistency loss and mini-batch training
strategies using both labeled and unlabeled data.

3.1. Sequence-level consistency loss

The sequence-level consistency loss considers the sequence-level
distribution specified by the teacher model over all possible se-
quencesW t ∈ T t. The consistency loss is defined as

Lsc(θ
SM
enc) = −

T+L∑
t=T+1

∑
W t∈T t

P (W t|Xt;θTMenc,θ
TM
dec)

logP (W t|G(Xt);θSMenc,θ
SM
dec). (15)

In this case, the student end-to-end ASR model is trained so that
generation results for the unlabeled data are constant even if slight
deformation is added. In fact, it is impossible to consider all possible
sequences, so we introduce a heuristic for determining the sequence-
level consistency loss; only K-best hypotheses from beam search
decoding results are used. The approximated loss is defined as

Lsc(θ
SM
enc) ≈ −

T+L∑
t=T+1

∑
W t∈T t

K

Q(W t|Xt;θTMenc,θ
TM
dec)

logP (W t|G(Xt);θSMenc,θ
SM
dec), (16)

where T t
K is the K-best hypotheses present in the beam search de-

coding results. Q(W t) is the normalized probability which is com-
puted from

Q(W t|Xt;θTMenc,θ
TM
dec) =

P (W t|Xt;θTMenc,θ
TM
dec)∑

W̄ t∈T t
K
P (W̄ t|Xt;θTMenc,θ

TM
dec)

.

(17)
The simplest approximation is to use 1-best result present in
the beam search decoding results based on the teacher model.
We define the 1-best generation result of the t-th utterance as
Ŵ t = {ŵt

1, · · · , ŵt
N̂t}. In this case, the consistency loss is approx-

imated as

Lsc(θ
SM
enc) ≈ −

T+L∑
t=T+1

N̂t∑
n=1

logP (ŵt
n|Ŵ t

1:n−1,G(Xt);θSMenc,θ
SM
dec). (18)

In this paper, we elucidate the effectiveness of both 1-best based
consistency loss and K-best based consistency loss.

3.2. Mini-batch training strategies

Our semi-supervised learning approach can be applied in two ways.
One is unsupervised data augmentation, where both labeled and un-
labeled data belong to the same domain. The other is unsupervised
domain adaptation, where labeled source domain data and unlabeled
target domain data are used. For each, we introduce the following
mini-batch training strategies.

• Unsupervised data augmentation: In each epoch, we up-
date the student model by randomly feeding mini-batches
drawn from either the labeled or unlabeled data set. This
helps to fully leverage both data sets for optimization against
the target domain.

• Unsupervised domain adaptation: In each epoch, we first
update the student model from mini-batches drawn from the
labeled data. After that, we update it from mini-batches
drawn from the unlabeled data. This helps to adapt the stu-
dent model into the domain of the unlabeled data at the end
of the epoch.

4. EXPERIMENTS

Our experiments used the Corpus of Spontaneous Japanese, which
includes academic presentations and extemporaneous presentations
[30]. Two semi-supervised learning conditions were assessed: un-
supervised data augmentation and unsupervised domain adaptation.
In the unsupervised data augmentation setup, the labeled data and
unlabeled data were drawn from academic presentations. On the
other hand, in the unsupervised domain adaptation setup, the labeled
data was drawn from academic presentations, and the unlabeled data
was drawn from the extemporaneous presentations. In addition, we
prepared three test sets; (Test 1, 2, and 3). Test 1 and 2 are the aca-
demic presentations and Test 3 is the extemporaneous presentation.
This paper uses characters as the tokens. Details of the data sets are
shown in Table 1. The labeled and unlabeled data 1 were used for ex-
amining the unsupervised data augmentation setup. The labeled and
unlabeled data 2 were used for examining the unsupervised domain
adaptation setup. Note that the number of characters of the unlabeled
data sets is calculated from their manual transcriptions that cannot be
used in the semi-supervised learning absolutely.
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Table 1. Experimental data sets.

Domain Data size Number of
(Hours) characters

Labeled data 1 Academic 82.9 2,222,994
Unlabeled data 1 Academic 169.6 4,524,392
Labeled data 2 Academic 252.5 6,747,386
Unlabeled data 2 Extemporaneous 263.1 6,679,489
Validation data Academic 4.8 122,097
Test data 1 Academic 1.8 48,064
Test data 2 Academic 1.9 47,970
Test data 3 Extemporaneous 1.3 32,089

4.1. Conditions

Our experiments introduced Transformer based encoder-decoder for
the end-to-end ASR models. We set I = 8 for the encoder blocks
and J = 6 for the decoder blocks. The Transformer blocks were
composed using the following conditions; output continuous repre-
sentations had dimensions of 256, inner outputs in the position-wise
feed forward networks had dimensions of 2,048, and the number of
heads in multi-head attentions was set to 4. For the speech encoder,
we used 40 log mel-scale filterbank coefficients appended with delta
and acceleration coefficients as acoustic features; the frame shift was
10 ms. The acoustic features were passed through two convolution
and max pooling layers with a stride of 2, so we downsampled them
to 1/4 along the time-axis. In the text decoder, we used 256 di-
mensional word embeddings. Vocabulary size was set to 2,476 for
the unsupervised data augmentation setup and 2,628 for the unsu-
pervised domain adaptation setup. For evaluation, we introduced the
following five setups.

• Supervised: Supervised learning using the labeled data. The
loss is defined by Eq. (10).

• Supervised+SpecAug: Supervised learning with SpecAug-
ment using the labeled data. The loss is defined by Eq. (11).

• Semi-supervised (1-best): Semi-supervised learning based
on sequence-level consistency training using both the labeled
and unlabeled data. λ in Eq. (14) was set to 0.5. We used the
1-best based consistency loss defined by Eq. (18).

• Semi-supervised (5-best): Semi-supervised learning based
on sequence-level consistency training using both the labeled
and unlabeled data. λ in Eq. (14) was set to 0.5. We used the
5-best based consistency loss defined by Eq. (16).

• Ideal semi-supervised: Pseudo semi-supervised learning
based on sequence-level consistency training using both the
labeled and unlabeled data sets. λ in Eq. (14) was set to
0.5. For this, we used manual transcriptions instead of using
the 1-best results in computing consistency loss defined by
Eq. (18). Note that decoder network was not trained from
the manual transcriptions. This can be regarded as the upper
bound of our semi-supervised learning.

For the optimization, we used the Adam optimizer with β1 = 0.9,
β2 = 0.98, ε = 10−9 and varied the learning rate based on update
rule as presented in previous studies [9]. Mini-batch size was set to
32 utterances; dropout rate in Transformer blocks was set to 0.1. We
introduced different mini-batch training strategies (described in Sec-
tion 3.2.) for each semi-supervised learning setup. Our SpecAug-
ment applied only frequency masking and time masking where both
used two masks each; frequency masking width was randomly cho-
sen from 0 to 20 frequency bins, and time masking width was ran-
domly chosen from 0 to 100 frames. For ASR decoding, we used a

Table 2. CER results (%) in unsupervised data augmentation setup.
Test 1 Test 2 Test 3

(Target) (Target) (Unknown)
Supervised 25.88 21.88 34.76
Supervised+SpecAug 21.23 17.23 30.49
Semi-supervised (1-best) 18.35 15.03 27.60
Semi-supervised (5-best) 17.86 14.62 27.03
Ideal semi-supervised 15.60 10.13 20.78

Table 3. CER results (%) in unsupervised domain adaptation setup.
Test 1 Test 2 Test 3

(Source) (Source) (Target)
Supervised 11.21 8.28 17.37
Supervised+SpecAug 9.41 6.97 15.50
Semi-supervised (1-best) 9.32 6.79 12.70
Semi-supervised (5-best) 9.31 6.76 12.36
Ideal semi-supervised 9.25 6.66 9.12

beam search algorithm in which the beam size was set to 20.

4.2. Results

We evaluate results of unsupervised data augmentation and unsuper-
vised domain adaptation. Experimental results in terms of character
error rate (CER) of both setups are shown in Tables 2 and 3, respec-
tively.

First, in both setups, SupecAugment improved ASR perfor-
mance in supervised learning. This indicates that it is important to
make a model robust to small deformation in supervised learning.
Next, in the unsupervised data augmentation setup, the results show
that semi-supervised learning methods outperformed supervised
learning methods in both target domain test data sets and unknown
domain test data set. It is thought that the performance improve-
ments were created by making the model robust to various input
examples. This suggests that unlabeled data can be leveraged for
constraining the model to be invariant to small deformation. In par-
ticular, semi-supervised learning with 5-best based sequence-level
consistency loss outperformed that with 1-best based sequence-level
consistency loss. This indicates that considering sequence-level
generation consistency precisely is effective in improving ASR per-
formance. In addition, in the unsupervised domain adaptation setup,
the results show that semi-supervised learning methods improved
ASR performance in the target domain test data set while maintain
ASR performance in source domain test data sets. These results
confirm that the proposed semi-supervised learning can effectively
improve ASR performance on unlabeled data in both unsupervised
data augmentation and unsupervised domain adaptation.

5. CONCLUSIONS

This paper proposed a sequence-level consistency training scheme
for enhanced semi-supervised learning of end-to-end ASR systems.
The main strength of sequence-level consistency training is that un-
labeled speech data can be leveraged for constraining end-to-end
ASR models so that they are invariant to small deformation as added
by SpecAugemnt. This efficiently yields models that are robust to
various input speech examples. Our experiments using Transformer-
based end-to-end ASR models showed our semi-supervised learn-
ing with sequence-level consistency training can efficiently improve
ASR performance using unlabeled speech data in both unsupervised
data augmentation and unsupervised domain adaptation setups.
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