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Abstract

Cross-lingual speech adaptation aims to solve the problem of leveraging mul-

tiple rich-resource languages to build models for a low-resource target language.

Since the low-resource language has limited training data, speech recognition

models can easily overfit. In this thesis, I introduce a novel transfer learning

framework based on large-scale multilingual pre-training and adapter-based cross-

lingual adaptation. Under the introduced framework, I propose a super multilin-

gual model named LID-42, which is trained on up to 5,000-hour training data

mixing 42 languages based on hybrid CTC-Attention Transformer. I also propose

two novel algorithms: MetaAdapter and SimAdapter. The proposed algorithms

leverage adapters which can be easily integrated into the Transformer structure.

The MetaAdapter leverages meta-learning to transfer the general knowledge from

training data to the test language. SimAdapter aims to learn the similarities be-

tween the source and target languages during fine-tuning using the adapters. I

conduct extensive experiments on five low-resource languages in Common Voice

dataset. Results demonstrate that our MetaAdapter and SimAdapter methods can

reduce WER by 2.98% and 2.55% with only 2.5% and 15.5% of trainable param-

eters compared to the strong full-model fine-tuning baseline. Moreover, I also

show that these two novel algorithms can be integrated for better performance

with up to 3.55% relative WER reduction.
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LI Language Identification

LID-42 Language-Independent Transformer for 42-Lingual Speech
Recognition

MAML Model-Agnostic Meta-Learning

NMT Neural Machine Translation

TER Token Error Rate

WER Word Error Rate

XLM Cross-Lingual Language Model

3



List of Figures

1.1.1 Illustration of the cross-lingual speech recognition task. . . . . . 11

2.2.1 Illustration of the Speech-Transformer architecture. . . . . . . . 17

3.2.1 LID-42 system architecture . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Number of training utterances for LID-42 (at log scale) . . . . . 25

3.3.2 Character error rates (CER) and language identification (LID) ac-

curacies of character-based model (Char.) and subword-baesd

model (SubW.). From left to right, the language-specific results

are sorted in the decreasing order by the amount of training data. 27

4.3.1 Illustration of MetaAdapter. . . . . . . . . . . . . . . . . . . . 33

4.4.1 Illustration of the SimAdapter module. . . . . . . . . . . . . . . 36

4.5.1 Pre-training of MetaAdapter . . . . . . . . . . . . . . . . . . . 44

4.5.2 Comparison between MAML and conventional multi-objective

learning (MOL) approach for Adapter pre-training. . . . . . . . 45

4.5.3 Guide loss of SimAdapter . . . . . . . . . . . . . . . . . . . . 46

4



4.5.4 Attention matrices of five low-resource target languages. A row

in the figure denotes a language, whose four settings are: (1)

without target adapter, (2) with target adapter but no guide loss

(γ = 0), (3) with target adapter and guide loss, and (4) SimAdapter

+. Column index indicates the Transformer layer number, where

0th to 11th layers are encoders, 12th to 17th are decoders. Best

viewed in color and zoomed in. . . . . . . . . . . . . . . . . . . 51

5



List of Tables

4.1 Training / validation / testing hours of source and target languages 39

4.2 Comparison of number of trainable parameters. . . . . . . . . . 40

4.3 Word error rates (WER) on the cross-lingual ASR tasks . . . . . 42

4.4 Comparison of different Adapter training strategies. . . . . . . . 43

4.5 WER results of SimAdapter with or without Adapter LT . Fusion

guide loss is set to 0 for SimAdapter with Adapter LT . . . . . . 46

4.6 Ablation study of the encoder and decoders . . . . . . . . . . . 48

4.7 Average Training / inference time. . . . . . . . . . . . . . . . . 48

6



Contents

Abstract 1

Acknowledgement 2

Abbreviations 3

List of Figures 4

List of Tables 6

1 Introduction 10

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Foundations of End-to-End Speech Recognition 15

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Speech Transformer Model . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Overall Structure . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Multi-Head Attention . . . . . . . . . . . . . . . . . . . 18

2.2.3 Feed-Forward Networks . . . . . . . . . . . . . . . . . 18

2.2.4 Positional Encoding . . . . . . . . . . . . . . . . . . . 18

2.2.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Connectionist Temporal Classification . . . . . . . . . . . . . . 19

7



2.4 Hybrid CTC-Attention Architecture . . . . . . . . . . . . . . . 20

2.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Character / Word Error Rate . . . . . . . . . . . . . . . 21

2.5.2 Real-Time Factor . . . . . . . . . . . . . . . . . . . . . 21

3 Multilingual Modeling for End-to-End Speech Recognition 23

3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Proposed Method: LID-42 . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Shared Vocabulary of Modeling Units . . . . . . . . . . 24

3.2.2 Joint Language Identification Task . . . . . . . . . . . . 25

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Mixed Corpora of 42 Languages . . . . . . . . . . . . . 25

3.3.2 Implementation Details . . . . . . . . . . . . . . . . . . 26

3.3.3 Final Results . . . . . . . . . . . . . . . . . . . . . . . 27

4 Exploiting Adapters for Cross-Lingual Speech Recognition 29

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Cross-Lingual Speech Recognition . . . . . . . . . . . . 29

4.2.2 Adapters . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Proposed Method: MetaAdapter . . . . . . . . . . . . . . . . . 32

4.3.1 Model-Agnostic Meta-Learning for Adapters . . . . . . 32

4.3.2 Training MetaAdapter . . . . . . . . . . . . . . . . . . 33

4.4 Proposed Method: SimAdapter . . . . . . . . . . . . . . . . . . 34

4.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Fusion Guide Loss . . . . . . . . . . . . . . . . . . . . 36

4.4.3 Training SimAdapter . . . . . . . . . . . . . . . . . . . 37

4.4.4 Integration of MetaAdapter and SimAdapter . . . . . . 38

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8



4.5.2 Compared Approaches . . . . . . . . . . . . . . . . . . 39

4.5.3 Implementation Details . . . . . . . . . . . . . . . . . . 41

4.5.4 Results and Analysis . . . . . . . . . . . . . . . . . . . 42

4.5.5 Attention Visualization . . . . . . . . . . . . . . . . . . 46

4.5.6 Do all Adapter layers need to be fused? . . . . . . . . . 47

4.5.7 Training and inference time . . . . . . . . . . . . . . . 48

5 Conclusions and Future Work 52

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Publications 54

Open-Source Projects 56

Bibliography 57

9



Chapter 1

Introduction

1.1 Background

Automatic speech recognition (ASR) based on end-to-end (E2E) models has

made remarkable progress by training on large-scale data [1,2]. We can use a sin-

gle E2E ASR system for a large number of languages [3, 4] without complicated

language-specific processing. Nevertheless, a well-known limitation of E2E ASR

methods is that they require considerable amount of training data to achieve su-

perior performances. Therefore, it remains a challenge for E2E ASR models to

achieve reasonable recognition performance for most of the low-resource lan-

guages among about 7,000 languages in the world.

Some research has indicated that the performances of low-resource languages

benefit by transferring the common knowledge from rich-resource languages in

ASR [5]. For instance, as shown in Figure 1.1.1, given Romanian as a low-

resource target language, cross-lingual ASR aims to build models by leverag-

ing the available rich-resource languages such as Italian, Welsh, and Russian

as source languages. Then the following question naturally arises: given these

rich-resource languages as source languages, how can we learn the transferable

knowledge from them to build cross-lingual ASR models for the target language

Romanian?
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Figure 1.1.1: Illustration of the cross-lingual speech recognition task.

Generally speaking, knowledge transfer can be achieved in three avenues:

(1) pre-training on the rich-resource languages and then fine-tuning on the low-

resource tasks [3, 6]; (2) performing multi-task training using all languages [7];

and (3) learning the general common knowledge and then rapidly adapting to the

low-resource languages using meta-learning [8]. A possible explanation is that

different languages intrinsically share some beneficial information like speaker,

environment and part of linguistic and phonetic knowledge.

Unfortunately, the existing three avenues all have various limitations. For

method (1), due to the limited training data in low-resource languages, direct fine-

tuning by re-training the parameters makes the model easily overfit and results in

catastrophic forgetting problem. As a consequence, the parameter efficiency for

method (1) is low. On the other hand, for method (2), the performance of the

target low-resource language could be biased by other high-resource languages

with much more training data; Lastly, (3) solves the overfitting problem of (1),

but meta-learning pre-training requires heavy computation and it still faces the

catastrophic forgetting problem. These problems make current transfer-based

methods inefficient [9, 10].

Recently, the adapter module was proposed for parameter-efficient fine-tuning

in multilingual settings [10, 11] to mitigate the data imbalance problem among

languages. Adapter is an add-on module to the encoder and decoder layers in

Transformer that mainly composed of layer normalization and fully-connected
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layers. During fine-tuning, we can freeze the backbones of the pre-trained mod-

els and only train the adapters which has a small number of task-specific pa-

rameters. Pfeiffer et al. [12] studied the fusion of adapters in natural language

processing where they linearly combine the outputs of multiple adapters for tar-

get classification task adaptation. However, it remains unexplored to investigate

the performance of adapters on cross-lingual ASR tasks.

To solve the problems mentioned above, in this thesis, I introduce a novel

transfer learning framework based on large-scale multilingual pre-training and

adapter-based cross-lingual adaptation. I firstly pre-train a super multilingual

Transformer model for 42-lingual ASR using up to around 5,000 hours labelled

speech data, which is language-independent and named as LID-42. It serves as

the backbone for the following cross-lingual transfer. Then I propose to inject

adapters into the backbone to perform cross-lingual adaptation, which promises

the parameter efficiency and could avoid the overfitting problem due to their

fewer trainable parameters.

Under the introduced framework, I propose two novel algorithms in this the-

sis: MetaAdapter [9] and SimAdapter [13]. I propose MetaAdapter to implicitly

learn general and transferable speech representations using model-agnostic meta-

learning (MAML) [14] and achieved promising results on extremely low-resource

languages. I propose SimAdapter to explicitly learn the similarity between the

source and target languages using the attention mechanism. My key motivation

of these methods is that different language in the world are sharing similarities

based on their similar geological characteristics or evolution [15–17]. Therefore,

it is feasible to implicitly or explicitly model such similarities in the ASR models.

It is worth noting that both of the two algorithms I present in this thesis are

parameter-efficient and thus can prevent the overfitting problem. To my best

knowledge, there is no existing research that tries to model the cross-lingual ASR

tasks by studying their relationship using meta-learning and transfer learning-

based adapters. In addition, the MetaAdapter and SimAdapter are compatible,
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thus can be integrated for better performance.

1.2 Thesis Organization

The structure of this paper is as follows. In Chapter 2, I review the fundamen-

tals of E2E ASR including CTC, Transformer model with attention mechanism

and hybrid CTC-Attention architecture.

Chapter 3 introduces the and presents my super LID-42 model based on hy-

brid CTC-attention Transformer and 42-lingual language-independent modeling.

This chapter is based on my previous work [4].

Chapter 4 introduces the details of the introduced framework including MetaAdapter

and SimAdapter algorithms and their integration SimAdapter +. I also present

extensive experiments and analysis on the proposed methods and compare them

with the conventional fine-tuning or direct training approaches. This chapter is

based my previous works [9, 13].

Finally, in Chapter 5, I conclude this thesis and present some possible direc-

tions of my future work.

1.3 Contributions

My contributions in this thesis can be summarized as follows:

• I propose a transfer learning framework consisting of 2 novel algorithms

based on large-scale pre-training and adapter-based adaptation for cross-

lingual and low-resource ASR.

• I present LID-42, a large-scale Transformer-based super multilingual model,

which is a strong backbone and has shown significant improvements of the

cross-lingual ASR performance on low-resource languages.
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• I comprehensively analyze the proposed MetaAdapter and SimAdapter al-

gorithms for cross-lingual low-resource ASR in terms of recognition accu-

racy, interpretability, and training / inference efficiency via extensive ex-

periments.

• Experiments on five low-resource languages demonstrate a relative WER

improvement of 2.98% with MetaAdapter and 2.55% with SimAdapter us-

ing only 2.5% and 15.5% trainable parameters compared with the strong

full-model fine-tuning , respectively.

• Finally, I show that the two algorithms can be integrated as SimAdapter +

to achieve better performance with up to 3.55% relative improvement.
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Chapter 2

Foundations of End-to-End Speech

Recognition

2.1 Overview

The most widely used end-to-end ASR systems is composed of 2 functional

modules named encoder and decoder. The encoder consumes N -frame acoustic

features X = {x1, x2, ..., xN} (i.e., MFCC, log-Mel filterbank, etc.) of the raw

speech as inputs and generates intermediate representations Xenc:

Xenc = Encoder(X), (2.1)

The decoder is then required to predict the posterior distribution based on the

encoder outputs Xenc:

P (Y |Xenc) = Decoder(Xenc), (2.2)

where n denotes the number of tokens in the predicted text.

In the following subsections, we will firstly introduce the widely-adopted

attention-based Transformer model including encoder and decoder for sequence-

to-sequence modeling. This is followed by the introduction to Connectionist
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Temporal Classification (CTC), another effective non-autoregressive method for

E2E ASR. In the third subsection, we will introduce the hybrid CTC-Attention

architecture combining the advantages of both CTC and vanilla attention models.

Lastly, we introduce the commonly adopted metrics to evaluate the performance

of E2E ASR models.

2.2 Speech Transformer Model

Transformer is an attention-based model introduced by Vaswani et al. [18]

to solve the sequential modeling tasks. It has shown promising results on many

natural language processing (NLP) tasks [19–21]. Dong et al. [22] introduced the

Speech-Transformer as a variant of Transformer in the speech processing field.

It has been widely adopted for various speech applications. In the following

subsections, I will explain the overall model structure as well as the details of the

core components of the Speech-Transformer.

2.2.1 Overall Structure

The overall architecture is shown in Figure 2.2.1. As model inputs, the Trans-

former model the acoustic features X (83-dimensional filter banks with pitch in

this thesis). The acoustic features are firstly subsampled by a factor of 4 by 2 con-

volution layers with kernel size 3 and stride 2. Then the following encoder layers

process the subsampled features (or embeddings) by applying self-attention and

the feed-forward networks.

Xenc = TransformerEncoder(Xenc) (2.3)

Before sent to the Transformer decoder layers, the input subwords or char-

acters are firstly mapped to the corresponding embeddings. The Transformer

decoder layers also accept the encoder outputs to perform cross-attention apart

16
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Figure 2.2.1: Illustration of the Speech-Transformer architecture.

from the self-attention and feed-forward. Note that the decoding process of the

Transformer decoder is autoregressive, which means that t-th prediction Yt is

conditioned on the previous t− 1 predictions Y1:t−1:

P (Yt|Xenc) = TransformerDecoder(Xenc, Y1:t−1). (2.4)

It is worth noting that unlike the vanilla Transformer [18] that injects layer

normalization (LN) layers after the multi-head attention and feed-forward layers

(named as Post-LN), Speech-Transformer adopt the Pre-LN structure where the

LNs are before other layers. The Pre-LN structure has been demonstrated being

able to stabilize the training and accelerate the convergence [23].
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2.2.2 Multi-Head Attention

The core component of the Transformer is the multi-head attention. The at-

tention operation can be formulated as below:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (2.5)

where dk is the feature dimension of the key matrix.

MultiHead(Q,K,V) = Concat(head1, head2, ..., headn)WO, (2.6)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

Specifically, for the self-attention, the query Q, key K, and value V are

the same features from the previous layer; while for the encoder-decoder cross-

attention, only Q is from the previous decoder layer while K and V are the en-

coder outputs.

2.2.3 Feed-Forward Networks

The feed-forward networks (FFN) consist of 2 linear transformation layers

and a ReLU activation function. It can be formulated as:

FFN(x) = max(0, xW1 + b1)W2 + b2, (2.7)

where x is the input feature, W1 and W2 are trainable weights, b1 and b2 are

trainable biases.

2.2.4 Positional Encoding

Position information is essential in sequential tasks, for example, change of

word orders could drastically change the sentence meaning. Since the attention

layers do not contain position information, position-dependent sine- and cosine-

18



based positional encoding functions are introduced to each element of both the

encoder and decoder embeddings as explicit position information.

 PEpos,2i =sin (pos/10, 0002i/dmodel)

PEpos,2i+1 =cos (pos/10, 0002i/dmodel)
, (2.8)

where pos and i denote the position and dimension of elements, respectively.

dmodel is the model dimension.

2.2.5 Optimization

We can optimize the Transformer model following the loss function below:

LATT = − logP (Y |Xenc) = − log
∏
t

P (Yt|Xenc, Y1:t−1), (2.9)

where Xenc represent the Transformer encoder outputs, Y1:t−1 denotes the tokens

of all the previous time steps before time step t.

2.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [24] is an efficient objective for

end-to-end ASR. By assuming conditional independence and monotonic align-

ment, CTC is able to model the target sequence via an alignment variable Z. We

can define a many-to-one mapping function B(·) so that

Y = B(Z), (2.10)

where B(·) removes the blank and repeated symbols. For example, for the align-

ment Z = “happ<blank>py”, the target sequence is Y = B(Z) = “happy”.

In practice, the CTC module often consists of a linear transformation and a

softmax layer to obtain the prediction score matrix C ∈ RT×V , where T and V
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denote the number of time steps and vocabulary size, respectively.

Then we can compute the posterior possibility of the alignment Z which maps

to the target sequence Y as below:

pCTC(B(Z) = Y |Xenc) =
T∏
t=1

Ct,Zt , (2.11)

whereXenc denotes the encoder outputs of T frames, Ct,Zt denotes the confidence

score of the Zt’s token at time step t.

The training objective of CTC is to maximize the posterior possibilities of all

the possible alignments that could map to the target sequence Y :

LCTC = − log
∑

Z∈B−1(Y )

pCTC(B(Z) = Y |Xenc), (2.12)

where B−1(Y ) is a one-to-many mapping that maps Y to all the possible align-

ments B−1(Y ) = {Z|B(Z) = Y }, which is the inverse of B(·).

2.4 Hybrid CTC-Attention Architecture

The hybrid CTC-attention architecture is proposed by Watanabe et al. [25] to

effectively utilize benefits of both CTC and attention decoders during the training

and decoding steps in ASR. To be specific, the aforementioned CTC task [24] is

introduced as an auxiliary objective for the encoder outputs in order to encour-

age the monotonic alignment and accelerate the convergence speed [25]. During

training, a weighted sum of the sequence-to-sequence attention loss LATT and the

CTC loss LCTC is employed:

LASR = (1− λ)LATT + λLCTC, (2.13)

where λ denotes the weight of the CTC module.

Similarly, during decoding, the CTC module outputs are used to re-score the

20



beam search results of the Transformer decoder on-the-fly:

Ŷ = argmax
Y ∈Y

(1− λ) logPATT(Y |Xenc) + λ logPCTC(Y |Xenc), (2.14)

where Xenc are the encoded features, Y denotes the set of the decoding hypothe-

ses.

2.5 Evaluation Metrics

2.5.1 Character / Word Error Rate

In this thesis, I use character error rate (CER) or word error rate (WER) as

the evaluation metric. Both CER and WER are commonly used edit-distance-

based metrics to evaluate the performance of ASR systems. Their difference is

that CER takes characters as the basic units while WER takes words as the basic

units.

Given the reference sequence of length N and the ASR predicted sequence,

we can align the two sequences by dynamic programming and count the number

of insertions I , the number of deletions D and the number of substitutions S, the

WER or CER can be calculated as follows:

WER (CER) =
I +D + S

N
. (2.15)

Lower error rates indicate higher accuracy and better ASR performance. Note

that the WER or CER could be larger than 100%.

2.5.2 Real-Time Factor

The Real-Time Factor (RTF) metric is often used to evaluate the decoding

speed of the ASR systems in terms of the decoding time cost. It is measured by

computing the ratio of the model decoding time Tdec to the total utterance duration

21



Tutt on the speech data.

RTF =
Tdec

Tutt
, (2.16)

Lower RTF represents smaller decoding time cost, and thus faster decoding speed.
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Chapter 3

Multilingual Modeling for

End-to-End Speech Recognition

3.1 Related Works

Multilingual E2E ASR is getting increasing attention over the years that han-

dles multiple languages with a single model. Watanabe et al. [26] proposed a

language-independent architecture based on hybrid CTC-attention structure [25]

with augmented vocabulary for character-based E2E ASR and joint language

identification. Toshniwal et al. [27] found that multilingual training leads to sig-

nificant relative improvement of recognition performance and the results can be

further boosted by conditioning the model on a language identifier. Some at-

tempts take a step towards realizing language-universal ASR. Li et al. [28] pro-

posed to replace the characters with the Unicode bytes as the output. Datta et

al. [29] unified different writing systems through a many-to-one transliteration

transducer. Recently, large-scale multilingual ASR systems have been investi-

gated [3, 4, 6, 10, 30]. Pratap et al. [3] proposed jointly training on 16,000 hours

speech data of 51 languages with up to 1 billion parameters. Inspired by [26], I

presented LID-42 in [4], a large-scale multilingual acoustic Transformer model

trained on 11 mixed corpora of 42 languages.
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3.2 Proposed Method: LID-42

LID-42 is a super multilingual ASR model based on 12 Transformer encoders

and 6 Transformer decoders with hybrid CTC-Attention architecture. It is trained

on around 5000-hour labeled speech data mixing 11 corpora covering 42 lan-

guage to obtain strong speech and language modeling abilities. I also make two

modifications following [26] to adapt it to the multilingual ASR task. The overall

system architecture can be found in Figure 3.2.1.

[ja]設置しました

[en]GOOD MORNING, I'D LIKE TO BOOK A HOLIDAY.

Outputs[zh]喂你好你是哪人哪[en] 
[ja] 
[zh]
…
A
B 
C 
…
あ
い
う
…
你
好
…

Shared 
Vocabulary

Linear CTC Loss

Transformer
Encoder

Transformer
Decoder

Input Features Output Sequence

Joint Decoding

Attention Loss

CTC Module

Figure 3.2.1: LID-42 system architecture

3.2.1 Shared Vocabulary of Modeling Units

To enable language-independent training and recognizing, I employ an aug-

mented shared vocabulary of modeling units and language tokens (e.g., <en>,

<fr>) of all the 42 languages. In this thesis, I compare two kinds of modeling

units: characters and subwords.
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3.2.2 Joint Language Identification Task

To reduce the possibility that predictions switch between languages, the lan-

guage tokens mentioned above are inserted to the beginning of training labels Y

as an auxiliary language identification objective. Consequently, the model learns

to first identify the language before predicting the speech contents. This can be

regarded as an auxiliary language identification (LID) task. It is worth noting that

the language identification objective is only used for LID-42 pre-training and is

dropped during transfer learning.

3.3 Evaluation

3.3.1 Mixed Corpora of 42 Languages
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Figure 3.3.1: Number of training utterances for LID-42 (at log scale)

Figure 3.3.1 shows the data I used for training the LID-42 model. It is mixed

from 11 corpora including: AISHELL [31], Aurora4, Babel, CHiME4, Common

Voice [32], Corpus of Spontaneous Japanese (CSJ) [33], Fisher Switchboard,

Fisher Callhome Spanish, HKUST [34], WSJ and Voxforge.
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3.3.2 Implementation Details

For all the experiments, 83-dimensional input features are extracted from the

raw speech composed of 80-dimensional filter banks and 3-dimensional pitch

features computed every 10 ms over a 25 ms window. The detailed Transformer

configuration follows the same setting as the big model described in [22]. The

models are trained using Adam optimizer with a varying learning rate lr strategy:

lr = k · d−0.5model ·min(step−0.5, step · warmup step−1.5), (3.1)

where hyperparameter k is the learning rate factor, lr linearly warms up before

step reaching warmup step and decreases proportionally to the inverse square

root of step afterward.

I employ two kinds of modeling units: characters and subwords. The char-

acter vocabulary includes 7,381 characters, and the subword vocabulary includes

15,943 subwords. The subwords are obtained using the SentencePiece library [35].

Apart from characters/subwords, 60 non-language symbols such as language IDs

and other symbols (e.g., <unk>) are also included in the vocabularies.

The ESPnet toolkit [36] is used to conduct the experiments 1. I follow the

same training and testing data splitting rules of corresponding ESPnet [36] recipes.

The model training and evaluation were performed using the TSUBAME 3.0 su-

percomputer 2. To accelerate the training process, I applied PyTorch distributed

communication package 3 to train the model on 10 computing nodes with 40

NVIDIA TESLA P100 GPUs. This results in a total batch size of 1,280. In to-

tal, the character-based model takes around 163 hours while the subword-based

model takes 222 hours to complete training.

1Recipe for LID-42 is available as part of ESPnet: https://github.com/espnet/
espnet/tree/master/egs/li42/asr1

2https://www.gsic.titech.ac.jp/en/tsubame
3https://pytorch.org/docs/stable/distributed.html
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3.3.3 Final Results

I present the language-specific and weighted average results in Figure 3.3.2.

From left to right, the language-specific results are sorted in the decreasing order

by the amount of training data. Firstly, we can observe that the CER results vary

a lot among the 42 languages. For example, for languages like English, Japanese,

and German, the CERs can be below 10%. On the other hand, for languages like

Kazakh, Mongolian, and Tatar the CERs can be larger than 80%. This could be

mainly due to their different amount training data and the language-specific task

difficulty. The language similarity could also affect the model performance, for

example, although the Italian, Welsh, and Dutch do not have much training data,

they are similar to other European languages like French, English, and German.
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Figure 3.3.2: Character error rates (CER) and language identification (LID) ac-
curacies of character-based model (Char.) and subword-baesd model (SubW.).
From left to right, the language-specific results are sorted in the decreasing order
by the amount of training data.

Secondly, it is found that the LID accuracy is not totally dependent on the
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recognition accuracy, some languages have worse CERs but higher LID accura-

cies, e.g. Cantonese and Tatar. The reason could be that their unique charac-

teristics make it hard to borrow knowledge from other languages but also make

it easier to distinguish them from other languages. The LID accuracies are all

beyond 79%, indicating the strong multilingual modeling ability of LID-42.

By comparing the subword- and character-based variants, we can see that the

subword-based vocabulary improves the model’s overall performance in terms of

CER and LID accuracy for 38 and 29 languages, respectively. The weighted av-

erage of CER is reduced from 27.8% to 27.2%. Meanwhile, the weighted average

of LID accuracy is increased from 93.5% to 94.0%. These results demonstrate

the superiority of introducing subwords.
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Chapter 4

Exploiting Adapters for

Cross-Lingual Speech Recognition

4.1 Problem Definition

The goal of cross-lingual speech recognition is to transfer the knowledge from

the existing languages to the new language. Formally speaking, given N rich-

resource languages {S1, S2, · · ·SN}, cross-lingual ASR aims at adapting the pre-

trained model to an unseen target low-resource language LT . Each language Si

is composed of the speech-text pairs and I typically use X and y to denote them

in this chapter, respectively, i.e., Si = {Xj, yj}Nij=1, where Ni is the total number

of training data. Also note that the target language is low-resource compared to

the training languages, i.e., NT � Ni,∀1 ≤ i ≤ N .

4.2 Related Works

4.2.1 Cross-Lingual Speech Recognition

Cho et al. [37] validated the effectiveness of cross-lingual transfer learning

for improving ASR performance. And this advantage can be further revealed by
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large-scale pre-training [3, 6]. For example, LID-42 can achieve a relative WER

reduction of up to 28.1% on low-resource languages by cross-lingual transfer [4].

Yi et al. [38] introduced an adversarial learning objective to learn language-

agnostic features. They appended a language discriminator after the shared en-

coder to distinguish which language the bottleneck features belong to. The objec-

tive of the discriminator is to correctly identify the language while the adversarial

objective of the encoder is to fool the discriminator. The adversarial training pro-

cess is realized with the use of the gradient reversal layer (GRL) [39]. Adams

et al. [6] performed experiments to analyze the impacts of language similarity,

context-independent phoneme CTC objective and the aforementioned language-

adversarial classification objective during multilingual pre-training to encourage

language-agnostic features for better cross-lingual adaptation.

Besides learning the language-agnostic features, the optimization-based meta-

learning approaches [14, 40] that aim to find a proper initialization for rapid

adaptation have also been explored for cross-lingual ASR [9]. Hsu et al. [8]

proposed to apply the model-agnostic meta-learning (MAML) [14] as the pre-

training method and achieved significant improvement over the conventional mul-

tilingual pre-training baseline. Xiao et al. [41] proposed the Adversarial Meta

Sampling framework by introducing a policy network (task sampler) to dynami-

cally sample languages based on their task difficulty. The ASR model is trained

to minimize the loss while the task sampler learns to choose the most difficult

languages that can maximize the loss. As a consequence, the learned initializa-

tion has a more balanced distance to all languages and shows good generalization

capacity in low-resource speech tasks.

4.2.2 Adapters

Due to the large quantity of parameters contained in the Transformer-based

models [4, 19, 42, 43], recent literature proposed the Adapter structure [44, 45]

for parameter-efficient adaptation of pre-trained Transformers [18, 19] on var-
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ious downstream tasks including language understanding [46] and neural ma-

chine translation (NMT) [18], etc. Adapter is a versatile module that can be

plugged into the Transformer blocks. The general philosophy for adapter-based

fine-tuning is to freeze the parameters θb of the Transformer backbone and only

tune the parameters θa of the adapter. Compared to fine-tuning the whole Trans-

former model, fine-tuning the adapters is significantly efficient with acceptable

performance loss [44]. Therefore, adapters have been adopted as a fine-tuning

technique in few-shot domain adaptation for NMT [47] and unsupervised cross-

lingual transfer [48] or domain adaptation [49] of large-scale pre-trained language

models like BERT [19] and XLM [50]. Li et al. [51] proposed a hypernetwork

that could generate parameters of task-specific adapters from task descriptions

to enable zero-shot learning [52]. More recently, Pfeiffer et al. [12] introduced

the AdapterFusion module to fuse adapters trained on different tasks to share

the knowledge. The difference between my work and theirs are that I focus on

the cross-lingual sequence-to-sequence ASR task while they experiment on text

classification tasks based on the pre-trained BERT [19].

Some researchers have proposed to apply the Adapters to the E2E ASR tasks.

In [10], Kannan et al. proposes to use the adapters to handle the data imbal-

ance problem for large-scale multilingual ASR. After obtaining the model trained

on the union of data from all languages, they trained the language-dependent

adapters on each of the languages again so that the multilingual backbone shares

information across languages while the adapters could allow for per-language

specialization. Winata et al. [11] extends this idea by further introducing a com-

mon adapter for all languages to learn language-agnostic information in the mul-

tilingual data.
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4.3 Proposed Method: MetaAdapter

In this section, I introduce the MetaAdapter in detail. MetaAdapter is inspired

by the idea of meta-learning [53] for fast adaptation to the new target tasks. In my

previous work [9], I investigated two meta-learning algorithms: Model-Agnostic

Meta-Learning (MAML) [14] and Reptile [40]. I found that MAML is more ro-

bust to the overfitting problem brought by the variance of adaptation data size and

pre-training epochs. Therefore, I adopt the MAML as the meta-training algorithm

in this thesis.

However, it is expensive to perform meta-learning directly on the full Speech-

Transformer model since the model has heavy parameters that could easily overfit

on the low-resource target data. To resolve this issue, MetaAdapter utilizes the

adapter modules to significantly reduce the adaptation parameters while aiming

to find a proper initialization for faster adaptation.

4.3.1 Model-Agnostic Meta-Learning for Adapters

The process of MetaAdapter is illustrated in Figure 4.3.1. Given a pre-trained

backbone speech-Transformer ASR model, MetaAdapter is composed of two

phases: (i) meta-train the MetaAdapter on a bunch of source tasks; (ii) fine-tune

the pre-trained adapter on unseen target tasks.

To use meta-learning, I view different languages as different tasks. I split

the parameters of MetaAdapter into two types: the backbone parameters θb (i.e.,

vanilla Transformer) and the parameters of all adapters θa. Thus, given N differ-

ent source languages {S1, S2, · · · , SN}, I pre-train the MetaAdapter module fθa

to obtain good initialization parameters θa that could generalize for fast adapta-

tion given any unseen target language. Meanwhile, parameters of the pre-trained

backbone θb are frozen during both the pre-training and the fine-tuning.
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Figure 4.3.1: Illustration of MetaAdapter.

Algorithm 1 Learning algorithm of the MetaAdapter
Input: Rich-resource languages {S1, · · · , SN}, low-resource task LT .

1: Train language-specific heads on source languages Si.
2: Initialize the MetaAdapter.
3: while meta-learning not done do
4: Optimizing the MetaAdapter using Eq. (4.3).
5: end while
6: Train the target head on target language LT .
7: Fine-tune the MetaAdapter using ASR loss Eq. (2.13).
8: return Cross-lingual ASR model.

4.3.2 Training MetaAdapter

In each pre-training episode, two subsets are randomly sampled from each

source training language Si, namely meta-training set Stri and meta-validation set

Svali , i.e., Stri ∩ Svali = ∅. One episode is composed of two iterations: an inner

iteration and an outer iteration. In the inner iteration, MAML updates the adapter

parameters θa by performing one or more gradient descent on Stri . For notation

simplicity, the updated parameter for language Si using the inner gradient descent

iteration is:

θ′a,i = θa − ε∇LStri (fθa) , (4.1)
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where L is the ASR loss function as introduced in section ?? and ε is the fast

adaptation learning rate. In the outer iteration, the adapter parameters are then

optimized to improve the performance of fθ′a,i with respect to θa across all the

meta-validation sets Svali . The meta-optimization objective of the outer iteration

is:

LSvali
(fθ′a,i) = LSvali

(
fθa−ε∇θaLStr

i
(fθa )

)
. (4.2)

I optimize the meta-optimization objective through gradient descent as:

θa = θa − µ
N∑
i=1

∇θaLSvali

(
fθ′a,i

)
, (4.3)

where µ is the meta step size.

After pre-training, the MetaAdapter should obtain a proper initialization for

any unseen target language(s). The complete training procedure of the MetaAdapter

is presented in Algo. 1.

4.4 Proposed Method: SimAdapter

Our motivation of SimAdapter is to improve the adapter-based cross-lingual

adaptation as well as the model interpretability by explicitly leveraging the knowl-

edge of the source languages stored in the adapter modules. Here, ‘Sim’ refers to

similarity.

SimAdapter is inspired by existing research on language and speech ori-

gins [15–17], which imply that different languages in the world are are sharing

similarities based on their similar geological characteristics or cultural develop-

ments. Thus, it is feasible to leverage the knowledge of multilingual adapters for

new target languages.
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4.4.1 Architecture

SimAdapter is a parameter-efficient algorithm that learns the similarities be-

tween existing language-specific adapters and the target low-resource language

based on the attention mechanism [18]. Similar to the adapters, SimAdapter can

also be easily integrated with existing pre-trained models and adapters.

The detailed composition of the SimAdapter is shown in Figure 4.4.1. By tak-

ing the language-agnostic representations from the backbone model as the query,

and the language-specific outputs from multiple adapter as the keys and values,

the final output for SimAdapter over attention are computed as (For notation sim-

plicity, I omit the layer index l below):

SimAdapter(z, a{S1,S2,...,SN}) =
N∑
i=1

Attn(z, aSi) · (aSiWV ) , (4.4)

where SimAdapter(·) and Attn(·) denotes the SimAdapter and attention opera-

tions, respectively. Specifically, the attention operation is computed as:

Attn(z, a) = Softmax

(
(zWQ)(aWK)

>

τ

)
, (4.5)

where τ is the temperature coefficient, WQ,WK ,WV are attention matrices.

Note that while WQ,WK are initialized randomly, WV is initialized with a di-

agonal of ones and the rest of the matrix with small weights (1e − 6) to retain

the adapter representations. Furthermore, a regularization term is introduced to

avoid drastic feature changes:

Lreg =
∑
i,j

((IV )i,j − (WV )i,j)
2 , (4.6)

where IV is the identity matrix with the same size as WV .

In our cross-lingual setting, the SimAdapter module is expected to utilize

language-specific knowledge from existing language adapters.
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Figure 4.4.1: Illustration of the SimAdapter module.

4.4.2 Fusion Guide Loss

Although SimAdapter aims to benefit from the similar knowledge of other

languages, I believe that the most crucial information is stored in the adapter of

the target language. However, since the weights of source and target adapters

are initialized equally, SimAdapter often distracts its attention significantly from

the target language during adaptation and generally does not perform well in our

experiments. To alleviate this problem, I propose a fusion guide loss to encour-

age the model to focus on the corresponding adapters for the similarity learning.

Specifically, for each language fusion layer f , I average the cross entropy of

adapter attention scores among all K time steps and S samples. The layer-wise

guide losses are added up as:

Lfguide = −
1

K × S

S∑
s=1

K∑
k=1

logαsf,k, (4.7)
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Algorithm 2 Learning algorithm of SimAdapter
Input: Rich-resource languages {S1, · · · , SN}, low-resource task LT .

1: Train language-specific heads on the source languages Si and the target lan-
guage.

2: Train Adapters At on top of language-specific heads.
3: Initialize SimAdapter layers.
4: while not done do
5: Optimizing SimAdapter layers using Eq. (4.9).
6: end while
7: return Target ASR model.

Lguide =
∑
f

Lfguide. (4.8)

Note that K represents the number of frames in the encoder and the number of

tokens in the decoder side, αsf,k denotes the attention score of target language’s

Adapter.

4.4.3 Training SimAdapter

A difference between the previous application of AdapterFusion [12] and our

SimAdapter for cross-lingual ASR is that a language-specific language head is

required to be trained for the unseen target language. However, training the

Adapters together with the language heads may result in the insufficient learn-

ing of semantic information in the adapters. Therefore, in this work, I introduce a

three-stage training strategy for SimAdapter-based ASR cross-lingual adaptation.

In the first stage, different from the previous work [9], SimAdapter trains the

language-specific heads for each source language Si as well as the target language

separately. This step aligns the language heads to the same latent semantic space

of the backbone model. In the second stage, adapters are trained based on the pre-

trained heads to learn the information. In the third stage, SimAdapter leverages

the fusion of source languages for better adaptation to the target language. Only

the parameters of the SimAdapter are trained in this stage.

By adding the WV regularization term weighted by η and the fusion guided
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loss weighted by γ, the final adaptation objective is given by:

L = LASR + ηLreg + γLguide. (4.9)

The complete training procedure of SimAdapter is presented in Algorithm 2.

4.4.4 Integration of MetaAdapter and SimAdapter

Although MetaAdapter and SimAdapter can both benefit cross-lingual adap-

tation by leveraging knowledge of source languages, they are designed from dif-

ferent perspectives. MetaAdapter aims to obtain a proper initialization for fast

adaptation by learning from the source languages, which can be regarded as a

type of latent transfer. On the other hand, SimAdapter explicitly models the sim-

ilarities between source and target languages with attention mechanism. There-

fore, MetaAdapter is good at handling extremely low-resource languages, while

with more training data SimAdapter can capture the language similarities more

precisely.

Moreover, note that MetaAdapter and SimAdapter are not independent algo-

rithms. They can be integrated into one algorithm, which I denote as SimAdapter

+. We can simply fuse the source adapters with the target adapter learned by

the MetaAdapter using SimAdapter. This can be seen as a two-stage knowl-

edge transfer process where we aim to learn general and transferable knowl-

edge from meta-learning in the first stage; then, we perform adaptation using

the SimAdapter algorithm for fine-grained knowledge transfer to achieve better

performance.
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4.5 Experiments

4.5.1 Data Set

I adopt the Common Voice 5.1 [32] corpus for our experiments. I follow the

official data splits for training, validation and testing. For the SimAdapter, I select

five rich-resource languages as source languages and five low-resource languages

as targets. Note that the source and target languages are all from European and

some of them are spoken in geographically close regions to empirically analyze

if the language similarities can be revealed by SimAdapter. The detailed data

statistics are shown in Table 4.1.

Table 4.1: Training / validation / testing hours of source and target languages

Language Train Valid Test

Source

Russian (ru) 80.61 11.78 12.61
Welsh (cy) 74.84 4.35 4.25
Italian (it) 88.74 19.74 20.85

Basque (eu) 73.26 7.46 7.85
Portuguese (pt) 37.40 5.40 5.85

Target

Romanian (ro) 3.04 0.42 1.66
Czech (cs) 20.66 2.84 3.13
Breton (br) 2.84 1.51 1.75
Arabic (ar) 7.87 2.01 2.09

Ukrainian (uk) 17.35 2.30 2.36

4.5.2 Compared Approaches

I consider the following fine-tuning-based approaches as well as both end-

to-end and conventional hybrid models and trained from random initialization

for comparison in this work. To evaluate the efficiency of different methods,

I also list numbers of trainable parameters in Table 4.2. It is shown that our

MetaAdapter and SimAdapter (and SimAdapter +) only use 2.5% and 15% of

the training parameters from the full model, respectively, which are significantly

parameter-efficient.
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Table 4.2: Comparison of number of trainable parameters.

Method # Trainable Parameters
Hybrid DNN/HMM 14,247K
Full Model 27,235K
Head 77K
Head+(Meta-)Adapter 676K
Head+(Meta-)Adapter+SimAdapter 4,224K

• Hybrid DNN/HMM: Standard hybrid DNN/HMM models are trained with

lattice-free MMI [54] criterion using Kaldi [55]. Specifically, I use 9 layers

TDNN [56] the acoustic model. The acoustic features are 100-dimensional

i-vector [57] and 40-dimensional MFCC. 3-gram language model is applied

for decoding. 1

• Transformer: I train a randomly-initialized Transformer model from scratch.

• Head: I keep the backbone model (LID-42) frozen and train the language-

specific head on top of it.

• Full-FT: I fine-tune the full model on every target language individually,

resulting in separate 5 models.

• Adapter: I inject and train the vanilla adapters while keeping the backbone

model frozen.

• MetaAdapter: I inject the pre-trained MetaAdapter and train it as the vanilla

adapters do.

• SimAdapter: I fuse the Adapters of the source languages with the target

language to improve the adaptation performance.

• SimAdapter +: Specifically, I combine the MetaAdapter and the SimAdapter

(namely SimAdapter +) to evaluate its performance and verify whether MetaAdapter

and SimAdapter are compatible.
1I did not find proper pronunciation dictionary for Breton. Therefore, only results of the other

4 languages are presented.
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4.5.3 Implementation Details

I implement the E2E methods based on the ESPnet [36] codebase 2. The

subword-based LID-42 model is used as the backbone model for adaptation. The

acoustic features are extracted following ESPnet. Numbers of SentencePiece [35]

subwords are set to 150 and 100 for high- and low-resource languages, respec-

tively.

I use Adam [58] as the optimizer. For the full-model fine-tuning, I follow

the same learning rate scheduling strategy as [18] and warmup the learning rate

to 0.2 in the first 10 epochs. The total number of training epochs is 200 for

full-model fine-tuning and SimAdapter, and 100 for the other methods. Early

stopping with patience 10 is adopted except for the training of source heads and

adapters. The source languages heads and adapters are trained using a batch size

of 1024 and learning rate 0.028. The target heads and adapters are trained using

a batch size of 512 and learning rate 0.02. For the SimAdapter, I used a batch

size of 128, learning rate 2e − 5 and regularization loss 0.01. I adopt η = 0.01

for the regularization loss and 1.0 as the guide loss weight γ. The temperature

coefficient τ is simply set to 1.0. I train the MetaAdapter for 30 epochs using

Adam [58] with β1 = 0 in the inner training loop and vanilla stochastic gradient

descent (SGD) in the outer loop. The inner adaptation learning rate and initial

meta step size µ are 0.028 and 1.0, respectively. The meta step size linearly

annealed to 0 over the course of training. The weight of the CTC module λ is

set to 0.3 throughout the experiments following ESPnet [36]. Beam size 10 is

employed for joint decoding.

I average the word error rate (WER) results on 5 languages to evaluate the

overall performance of different methods by default. To reflect the performance

on target languages according to their imbalanced test data duration (more test

data often represents more training data), I also compute the weighted average

2The source code is available at https://github.com/jindongwang/
transferlearning/tree/master/code/ASR/Adapter
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WERs, which is more friendly to the methods that require relatively more training

data.

4.5.4 Results and Analysis

Cross-lingual speech recognition

Table 4.3 shows the main results on cross-lingual ASR. The first three columns

show the non-fine-tuning-based baselines. First, it can be found that the hybrid

DNN/HMM model outperforms Transformer on 2 out of 4 languages (Romanian

(ro), Arabic (ar)), and these 2 languages are with least training data. The results

indicate that the overfitting issue occurs to the Transformer model. It could fur-

ther be inferred that even hybrid DNN/HMM has the overfitting problem on the

extremely low-resource Romanian language, since lower WER is obtained with

the linear head simply trained on top of the frozen but powerful LID-42 backbone.

Table 4.3: Word error rates (WER) on the cross-lingual ASR tasks

Target
Language

Hybrid
DNN/HMM Transformer Head Full-FT Adapter

Sim-
Adapter

Meta-
Adapter

Sim-
Adapter+

Romanian
(ro) 70.14 97.25 63.98 53.90 48.34 47.37 44.59 47.29

Czech
((cs) 63.15 48.87 75.12 34.75 37.93 35.86 37.13 34.72

Breton
((br) - 97.88 82.80 61.71 58.77 58.19 58.47 59.14

Arabic
((ar) 69.31 75.32 81.70 47.63 47.31 47.23 46.82 46.39

Ukrainian
(uk) 77.76 64.09 82.71 45.62 50.84 48.73 49.36 47.41

Average - 76.68 77.26 48.72 48.64 47.48 47.27 46.99
+Weighted - 72.28 77.54 46.72 47.38 46.08 46.12 45.45

On the other hand, from the fine-tuning-based approaches presented on the

right-hand side, we can observe that the adapters successfully avoid the overfit-

ting problem and outperform the full-model fine-tuning method on 3 very low-

resource languages (Romanian, Czech, Arabic). It can be also found that the pro-

posed MetaAdapter and SimAdapter approaches can achieve similar and compet-

itive results on the 5 target languages. Furthermore, I notice that both the MetaAdapter

and SimAdapter consistently improve the performance over the adapters and nar-
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row the gap with Full-FT on the languages with relatively more training data

(Czech and Ukrainian). Meanwhile, the MetaAdapter method performs better

on the extremely low-resource languages (ar, ro) and has lower average WER,

while SimAdapter shows better results on moderate low-resource languages (br,

cs) and obtains lower weighted average WER. Finally, by combining the MetaAdapter

with SimAdapter, the SimAdapter + method surpasses all the other approaches

and obtains the best average performance on the 5 languages, indicating that the

two methods are compatible since they leverage the source information in differ-

ent ways. Combining the results from Table 4.2 where SimAdapter + only uses

15.5% trainable parameters of the full model, we see that SimAdapter + is both

effective and parameter-efficient.

Ablation Study

Impact of different training strategies. I compare the impact brought by dif-

ferent adapter-training strategies, i.e., jointly training the adapter with head and

the first two stages of the training strategy proposed in Section ??. The results

are presented in Table 4.4. It is clear that the proposed two-stage training strategy

can consistently reduce the WERs of both the adapters and the SimAdapter.

Table 4.4: Comparison of different Adapter training strategies.

Target Joint +SimAdapter Two-stage +SimAdapter
ro 52.92 53.88 48.34 47.37
cs 39.16 36.79 37.93 35.86
br 65.10 63.37 58.77 58.19
ar 50.53 49.31 47.31 47.23
uk 52.27 48.84 50.84 48.73

Average 52.00 50.44 48.64 47.48
+Weighted 50.35 48.57 47.38 46.08
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Impact of pre-training epochs for MetaAdapter

To validate the meta-training effects for the MetaAdapter, I select checkpoints

of 5 pre-trained epochs {10, 15, 20, 25, 30} and fine-tune them following the same

setting as explained in Section 4.5.3. I present the results in Figure 4.5.1. It could

be found that the resulted WERs get improved with more pre-training epochs,

indicating the effectiveness of meta-learning.

10 15 20 25 30
Pre-training epochs

40

45

50

55

60

W
ER

 (%
)

ro
cs
br

ar
uk

AVG
Full-FT

Figure 4.5.1: Pre-training of MetaAdapter

For comparison, I also conduct the same experiment on another adapter pre-

trained on source languages using conventional multi-objective learning (MOL)

method and visualize the average WERs in Figure 4.5.2. It is clear that with the

more pre-training epochs, the MOL-trained adapter tends to overfit on the source

data and performs worse on the target languages.

Analyzing the weight of guide loss for SimAdapter

I then analyze the impacts of the weight γ of the proposed guide loss within

{0, 0.001, 0.01, 0.1, 0.5, 1.0} for the SimAdapter. As shown in Figure 4.5.3, in-

creasing γ generally benefits the improvement of average performance, indicat-
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Figure 4.5.2: Comparison between MAML and conventional multi-objective
learning (MOL) approach for Adapter pre-training.

ing the correctness of our assumption that SimAdapter layers can learn better

under the guidance. We can also observe that when with the increasing of γ,

SimAdapter achieves comparable results to full-model fine-tuning at the weight

of 0.1 and surpasses it consistently at 0.5 and 1.0.

How much information can be shared across adapters

Although SimAdapter improves the WER results, we do not know whether

and how much the other languages can contribute due to the existence of the target

language’s adapter. Therefore, I fuse the adapters without using the adapters

from target languages to see whether additional gains can be obtained with only

source adapters. Table 4.5 shows the results. It can be found that even without

the target adapter, SimAdapter can still improve the performance for most of the

languages except for Romanian, indicating the effectiveness of learning language

information from source adapters.
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Figure 4.5.3: Guide loss of SimAdapter

Table 4.5: WER results of SimAdapter with or without Adapter LT . Fusion guide
loss is set to 0 for SimAdapter with Adapter LT .

Target Head w/o Adapter LT w/ Adapter LT
ro 63.98 67.83 53.62
cs 75.12 55.06 36.55
br 82.80 77.04 60.87
ar 81.70 64.68 48.47
uk 82.71 69.09 51.10

Average 77.26 66.74 50.12
+Weighted 77.54 65.33 48.39

4.5.5 Attention Visualization

To further show the relationship between source and target languages, I visu-

alize the attention maps for each target language. The attention value reflects their

similarities. Figure 4.5.4 shows the results of three different types of languages:

(1) without target adapter, (2) with target adapter but no guide loss (γ = 0), (3)

with target adapter and guide loss, and (4) with target MetaAdapter and guide

loss.

I take the Ukrainian (uk) as an example. Firstly, from the figure on the left,
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we can observe a trend that SimAdapter layers tend to pay more attention to

the Russian (ru)’s adapter, which could be because of the linguistic similarity

between Ukrainian and Russian. However, after introducing the target adapter,

SimAdapter layers obviously turn to focusing more on the target adapter, but

there are still diverse attentions across other languages. By introducing the guide

loss, the SimAdapter layers is forced to pay more attention to the target adapter

and fusing fewer information from other languages.

I also notice that in the first encoder layer, the attention distribution seems to

be uniform across the source languages. By analyzing the outputs, I found that

the adapters in the first layer tend to keep the backbone representation unchanged

via the residual connection. The same phenomenon can also be observed on the

Czech (cs) target language. A possible reason could be that the first layer is to

extract general acoustic features which is language-independent. Since I observe

a similar trend in the first decoder layer (layer 12) that the attention distributions

tend to be more distracted, I thus assume that adapters in the bottom layers in both

the encoder and decoder are less important for cross-lingual adaptation, which

I conduct experiments in next subsection to analyze the performance of fusing

different adapters.

4.5.6 Do all Adapter layers need to be fused?

By observing the attention maps, I notice that for some layers, the attention

seems to focus solely on the target adapter with a 100% attention score. This phe-

nomenon occurs more frequently in the higher decoder layers, i.e., 12th to 17th

layers in Fig. 4.5.4. In such cases, the fusion seems not to be necessary. I doubt

whether we can achieve comparable performance while fusing adapters in part of

the layers only. Therefore, I conduct the ablation experiments by only fusing part

of the layers. The results are presented in Table 4.6. Although some languages

(e.g., Breton) can retain the performance by only fusing 2 bottom layers, fusing

more layers generally lead to better performance.

47



Table 4.6: Ablation study of the encoder and decoders

Target Enc1-Dec1 Enc12-Dec1 Enc12-Dec6
ro 48.39 48.25 47.37
cs 37.31 36.30 35.86
br 57.85 59.08 58.19
ar 47.48 47.34 47.23
uk 50.58 48.98 48.73

Average 48.32 47.99 47.48
+Weighted 47.04 46.55 46.08

4.5.7 Training and inference time

Finally, I compare the average training time of full-model fine-tuning, MetaAdapter

and SimAdapter methods per iteration as well as their inference real-time factor

(RTF) on the 5 target languages. The training and decoding are conducted on

1 GeForce RTX 2080 Ti GPU with batch size 64. The results are shown in Ta-

ble 4.7.

It could be found that the MetaAdapter module significantly accelerates the

training process while the SimAdapter introduces minor additional time cost

compared with full-model fine-tuning. The RTFs of Full-FT and MetaAdapter

are at the same level. The reason that MetaAdapter has slightly lower RTF could

be due to its shorter average prediction lengths. On the other hand, the relative

RTF increasing of 22.12% brought by SimAdapter is also acceptable.

Table 4.7: Average Training / inference time.

Training Time (sec.) RTF
Full-FT 0.253 (-) 0.045 (-)
MetaAdapter 0.143 (43.48%↓) 0.043 (4.06%↓)
SimAdapter 0.263 (3.95%↑) 0.055 (22.12%↑)
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cy eu it pt ru

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

20.00% 20.00% 20.00% 20.00% 20.00%
9.24% 9.58% 59.86% 11.75% 9.58%
4.92% 0.87% 15.77% 2.11% 76.33%
13.17% 20.33% 30.17% 18.15% 18.17%
8.60% 10.54% 9.21% 6.55% 65.10%
7.72% 19.34% 3.92% 1.31% 67.71%
22.20% 14.60% 18.72% 16.37% 28.12%
0.68% 21.74% 2.83% 2.88% 71.88%
7.30% 24.75% 9.95% 15.31% 42.68%
5.12% 15.49% 1.81% 11.02% 66.56%
2.09% 0.28% 4.80% 5.26% 87.56%
3.56% 26.00% 16.05% 8.71% 45.68%
2.13% 40.26% 9.53% 0.00% 48.07%
54.12% 4.12% 14.72% 20.80% 6.25%
54.40% 2.43% 13.37% 24.92% 4.89%
3.74% 2.84% 2.76% 9.08% 81.59%
2.81% 0.00% 52.74% 42.41% 2.05%
4.87% 0.00% 92.49% 0.10% 2.54%

(a) w/o target adapter (uk)

cy eu it pt ru uk

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.78% 0.78% 0.78% 0.78% 0.78% 96.12%
1.71% 1.71% 0.18% 5.59% 1.71% 89.11%
3.07% 2.62% 13.06% 3.81% 0.21% 77.23%
1.71% 3.06% 1.81% 7.64% 2.40% 83.37%
3.82% 0.37% 14.12% 1.08% 1.46% 79.15%
6.40% 6.47% 24.50% 0.53% 4.52% 57.58%
0.06% 0.91% 1.41% 0.40% 1.88% 95.34%
3.00% 7.27% 0.62% 30.26% 0.31% 58.53%
1.41% 13.06% 0.40% 19.98% 4.83% 60.32%
0.31% 0.48% 2.71% 9.10% 40.59% 46.81%
2.32% 38.27% 2.04% 0.00% 0.57% 56.81%
0.06% 0.23% 1.81% 5.48% 23.86% 68.57%
48.58% 0.00% 20.99% 1.22% 7.20% 22.01%
5.61% 30.76% 0.17% 0.25% 2.59% 60.62%
1.12% 0.30% 10.75% 62.88% 4.06% 20.89%
0.10% 0.30% 49.09% 0.00% 0.00% 50.51%
0.00% 0.00% 0.00% 0.00% 0.10% 99.90%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(b) w/o guide loss (uk)

cy eu it pt ru uk

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.71% 0.71% 0.71% 0.71% 0.71% 96.47%
0.27% 0.27% 0.04% 0.19% 0.27% 98.96%
0.22% 0.30% 0.21% 0.29% 0.03% 98.95%
0.14% 0.14% 0.04% 0.05% 0.14% 99.50%
0.03% 0.00% 0.08% 0.06% 1.64% 98.19%
1.70% 0.00% 0.00% 0.00% 0.06% 98.25%
0.00% 0.00% 0.00% 0.00% 1.58% 98.42%
0.00% 0.00% 0.06% 0.00% 0.06% 99.89%
0.06% 0.11% 0.00% 0.06% 0.51% 99.27%
0.11% 0.00% 0.06% 0.00% 0.79% 99.04%
1.87% 0.00% 0.06% 0.06% 1.47% 96.55%
0.11% 0.06% 0.00% 2.09% 0.17% 97.57%
0.00% 0.00% 48.07% 2.03% 0.00% 49.90%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.10% 0.00% 99.90%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(c) target adapter + guide loss (uk)

cy eu it pt ru uk

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.01% 0.01% 0.01% 0.01% 0.01% 99.95%
0.76% 0.71% 0.24% 0.29% 0.71% 97.29%
0.46% 1.06% 0.73% 0.43% 0.01% 97.32%
0.53% 0.56% 0.38% 0.24% 0.34% 97.95%
0.55% 0.34% 2.40% 0.95% 0.32% 95.44%
0.18% 0.04% 0.06% 0.17% 0.07% 99.48%
0.06% 0.06% 0.00% 0.17% 0.00% 99.72%
0.11% 0.17% 0.00% 0.06% 0.17% 99.49%
0.17% 0.00% 0.00% 0.11% 0.20% 99.52%
0.37% 0.06% 0.17% 0.06% 0.23% 99.12%
1.64% 0.00% 0.00% 0.17% 0.11% 98.08%
0.11% 0.00% 0.00% 1.64% 1.64% 96.61%
50.20% 1.01% 0.00% 0.00% 3.35% 45.44%
0.91% 0.00% 49.29% 0.91% 0.10% 48.78%
0.00% 0.00% 0.10% 0.00% 2.94% 96.96%
0.00% 0.00% 0.00% 0.10% 0.00% 99.90%
0.00% 0.00% 0.00% 0.41% 0.00% 99.59%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(d) meta-adapter + guide loss (uk)

cy eu it pt ru

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

20.00% 20.00% 20.00% 20.00% 20.00%
8.05% 7.73% 33.06% 43.45% 7.73%
6.70% 0.85% 12.93% 3.93% 75.59%
6.71% 17.18% 31.05% 15.98% 29.08%
9.31% 32.80% 34.41% 9.09% 14.40%
8.70% 34.27% 39.07% 10.62% 7.36%
40.06% 17.97% 24.73% 8.27% 8.96%
25.54% 4.21% 37.32% 10.02% 22.91%
18.76% 8.76% 52.50% 8.77% 11.22%
32.34% 22.40% 12.18% 30.26% 2.81%
9.34% 49.45% 7.55% 32.27% 1.39%
1.23% 0.00% 1.89% 61.85% 35.03%
0.00% 0.00% 100.00% 0.00% 0.00%
2.11% 15.37% 77.10% 0.50% 4.91%
37.05% 0.00% 0.00% 62.76% 0.19%
16.25% 3.74% 6.17% 5.57% 68.28%
17.33% 0.19% 6.90% 63.67% 11.91%
60.08% 8.85% 0.00% 31.06% 0.00%

(e) w/o target adapter (ar)

cy eu it pt ru ar

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

4.39% 4.39% 4.39% 4.39% 4.39% 78.05%
5.56% 5.56% 7.07% 12.53% 5.56% 63.74%
12.39% 6.16% 9.20% 8.86% 0.11% 63.29%
3.04% 5.40% 28.61% 14.12% 6.07% 42.75%
4.36% 5.08% 8.65% 4.72% 3.93% 73.25%
6.15% 1.34% 5.04% 0.80% 1.07% 85.60%
0.12% 2.42% 13.62% 0.08% 0.25% 83.51%
2.49% 3.55% 0.41% 22.18% 1.48% 69.89%
8.53% 0.41% 3.28% 0.90% 12.55% 74.33%
25.95% 2.90% 2.63% 3.94% 21.49% 43.10%
21.37% 12.59% 5.00% 0.98% 0.57% 59.47%
0.16% 0.16% 0.25% 1.89% 0.08% 97.46%
0.00% 0.00% 66.73% 0.00% 0.57% 32.70%
2.25% 15.80% 74.75% 2.28% 0.95% 3.97%
0.38% 0.00% 2.46% 0.38% 58.60% 38.19%
0.00% 0.00% 0.19% 0.76% 58.60% 40.45%
0.00% 0.19% 0.00% 0.00% 0.19% 99.62%
0.00% 0.00% 59.36% 0.00% 0.00% 40.64%

(f) w/o guide loss (ar)

cy eu it pt ru ar

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1.20% 1.20% 1.20% 1.20% 1.20% 94.00%
0.69% 0.69% 0.04% 2.69% 0.69% 95.22%
0.47% 0.46% 0.57% 0.94% 0.00% 97.55%
0.22% 0.42% 0.60% 4.14% 0.43% 94.20%
0.00% 0.08% 0.25% 0.25% 0.25% 99.18%
0.00% 0.00% 1.89% 0.08% 0.08% 97.95%
0.00% 0.33% 0.08% 0.25% 0.00% 99.34%
0.16% 0.08% 0.33% 0.16% 0.08% 99.18%
0.33% 0.00% 0.08% 0.16% 0.08% 99.34%
0.33% 0.49% 1.07% 1.97% 0.57% 95.57%
2.71% 0.16% 0.08% 0.08% 0.25% 96.72%
0.00% 0.00% 0.00% 1.97% 0.00% 98.03%
0.00% 0.00% 1.13% 0.00% 0.00% 98.87%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.19% 0.00% 0.00% 0.00% 0.19% 99.62%

(g) target adapter + guide loss (ar)

cy eu it pt ru ar

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
1.06% 1.06% 0.19% 0.33% 1.06% 96.30%
0.42% 0.67% 0.59% 0.49% 0.03% 97.80%
2.49% 3.28% 1.25% 1.01% 0.73% 91.24%
0.08% 0.21% 0.12% 0.21% 0.16% 99.22%
0.00% 0.08% 0.00% 0.00% 0.08% 99.84%
0.25% 0.25% 0.08% 0.00% 0.00% 99.43%
0.00% 0.08% 0.00% 0.08% 0.25% 99.59%
0.49% 0.44% 0.33% 0.31% 0.25% 98.18%
0.25% 0.16% 0.49% 0.49% 0.08% 98.52%
0.25% 2.21% 0.08% 0.25% 0.41% 96.80%
0.33% 0.16% 1.97% 0.08% 0.08% 97.37%
0.00% 0.00% 0.00% 58.60% 0.00% 41.40%
0.00% 0.00% 0.00% 0.19% 0.00% 99.81%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(h) meta-adapter + guide loss (ar)
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cy eu it pt ru

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

20.00% 20.00% 20.00% 20.00% 20.00%
26.77% 29.81% 4.05% 9.56% 29.81%
28.11% 0.22% 3.12% 5.07% 63.47%
10.67% 7.48% 20.76% 35.30% 25.79%
14.77% 30.87% 23.68% 14.62% 16.06%
8.51% 30.46% 24.46% 25.85% 10.72%
20.02% 20.46% 13.82% 33.34% 12.35%
16.00% 8.15% 10.14% 25.08% 40.63%
18.28% 8.68% 32.23% 25.38% 15.43%
17.98% 14.95% 11.07% 35.97% 20.03%
15.35% 25.43% 10.41% 20.22% 28.59%
19.50% 10.54% 28.72% 27.80% 13.44%
0.20% 0.00% 37.55% 0.00% 62.25%
3.16% 2.77% 68.18% 0.00% 25.89%
2.08% 12.85% 0.00% 22.83% 62.25%
8.35% 4.13% 77.77% 5.78% 3.97%
8.61% 0.79% 68.49% 10.33% 11.78%
0.40% 0.00% 97.83% 1.78% 0.00%

(i) w/o target adapter (br)

cy eu it pt ru br

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

4.69% 4.69% 4.69% 4.69% 4.69% 76.57%
2.98% 4.33% 10.52% 3.34% 4.33% 74.51%
17.22% 3.46% 2.62% 6.51% 1.96% 68.23%
5.80% 3.64% 7.12% 6.94% 3.96% 72.53%
1.29% 17.98% 1.18% 0.94% 2.14% 76.48%
0.53% 19.63% 0.92% 3.43% 0.40% 75.10%
24.51% 1.58% 11.86% 4.74% 6.32% 50.99%
2.37% 0.66% 2.24% 15.94% 10.54% 68.25%
3.29% 4.15% 3.43% 2.31% 2.24% 84.58%
0.66% 4.48% 1.98% 29.12% 4.35% 59.42%
5.14% 1.05% 22.79% 2.50% 4.22% 64.30%
0.79% 0.26% 3.56% 8.83% 0.53% 86.03%
0.00% 0.00% 1.58% 0.00% 0.00% 98.42%
0.20% 0.49% 0.49% 0.00% 0.20% 98.62%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
1.58% 0.20% 62.06% 0.20% 1.19% 34.78%
8.50% 0.20% 3.75% 37.75% 0.59% 49.21%
0.00% 0.00% 0.00% 28.66% 0.00% 71.34%

(j) w/o guide loss (br)

cy eu it pt ru br

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.02% 0.02% 0.02% 0.02% 0.02% 99.89%
0.07% 0.07% 0.00% 0.03% 0.07% 99.76%
0.15% 0.07% 0.07% 0.07% 0.00% 99.64%
0.07% 0.11% 0.03% 0.03% 0.25% 99.52%
0.13% 0.00% 0.26% 0.13% 3.03% 96.44%
3.03% 0.00% 0.00% 0.13% 0.26% 96.57%
0.00% 0.26% 0.00% 0.00% 0.00% 99.74%
3.03% 0.00% 0.00% 0.00% 0.13% 96.84%
0.00% 0.00% 0.13% 0.13% 0.00% 99.74%
0.13% 1.84% 0.00% 0.26% 0.26% 97.50%
0.40% 0.53% 0.26% 0.26% 0.13% 98.42%
0.53% 0.00% 3.16% 1.45% 0.13% 94.73%
61.26% 0.00% 0.00% 0.00% 0.00% 38.74%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 61.26% 38.74%
0.00% 0.00% 0.00% 0.20% 0.00% 99.80%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(k) target adapter + guide loss (br)

cy eu it pt ru br

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.84% 0.84% 0.31% 0.63% 0.84% 96.54%
1.20% 1.80% 1.11% 1.96% 0.00% 93.94%
2.92% 6.25% 2.47% 1.22% 1.42% 85.73%
0.36% 1.05% 0.51% 0.85% 3.44% 93.78%
3.19% 0.26% 0.00% 0.13% 0.00% 96.41%
0.26% 0.26% 0.00% 3.16% 0.79% 95.52%
0.13% 0.00% 0.00% 0.13% 0.00% 99.74%
0.13% 0.20% 0.66% 1.05% 0.13% 97.83%
1.58% 0.40% 0.92% 0.79% 0.53% 95.78%
3.59% 0.40% 0.26% 0.26% 0.66% 94.83%
0.13% 0.13% 0.00% 3.03% 0.13% 96.57%
61.26% 0.00% 0.00% 0.00% 0.00% 38.74%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.40% 0.00% 0.00% 0.00% 0.00% 99.60%
0.00% 0.00% 0.20% 0.00% 0.00% 99.80%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(l) meta-adapter + guide loss (br)

cy eu it pt ru

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

20.00% 20.00% 20.00% 20.00% 20.00%
8.16% 8.55% 54.30% 20.43% 8.55%
18.03% 23.92% 37.88% 19.82% 0.35%
11.72% 16.03% 12.97% 29.55% 29.74%
5.38% 13.42% 56.29% 9.16% 15.76%
22.11% 12.28% 23.52% 5.35% 36.74%
5.52% 12.57% 12.14% 37.77% 32.00%
9.91% 23.26% 1.16% 46.49% 19.19%
8.14% 1.45% 59.30% 16.57% 14.53%
25.87% 24.13% 4.84% 16.38% 28.78%
19.19% 41.57% 4.65% 33.43% 1.16%
26.16% 3.49% 5.23% 6.98% 58.14%
20.45% 31.82% 47.73% 0.00% 0.00%
18.18% 71.21% 1.89% 8.71% 0.00%
86.36% 11.36% 0.00% 0.00% 2.27%
22.73% 0.00% 34.09% 27.27% 15.91%
0.00% 100.00% 0.00% 0.00% 0.00%
0.00% 2.27% 2.27% 95.45% 0.00%

(m) w/o target adapter (cs)

cy eu it pt ru cs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

16.67% 16.67% 16.67% 16.67% 16.67% 16.67%
9.90% 9.90% 11.41% 6.09% 9.90% 52.80%
10.41% 9.33% 18.92% 12.47% 0.48% 48.40%
1.51% 1.51% 3.35% 8.50% 1.49% 83.64%
3.68% 3.44% 25.49% 1.59% 2.86% 62.94%
0.00% 4.55% 0.00% 0.19% 13.95% 81.30%
2.56% 24.87% 17.25% 3.02% 7.01% 45.29%
0.15% 18.17% 0.00% 10.61% 0.00% 71.08%
2.33% 0.58% 14.53% 0.58% 0.00% 81.98%
3.29% 12.98% 4.75% 3.29% 39.73% 35.95%
0.00% 7.56% 0.58% 0.58% 0.00% 91.28%
1.16% 0.00% 0.00% 15.70% 0.00% 83.14%
0.00% 0.00% 65.91% 0.00% 31.82% 2.27%
5.68% 4.92% 44.70% 19.70% 2.27% 22.73%
2.27% 0.00% 11.36% 31.82% 0.00% 54.55%
0.00% 0.00% 31.82% 4.55% 2.27% 61.36%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 31.82% 0.00% 0.00% 68.18%

(n) w/o guide loss (cs)

cy eu it pt ru cs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

16.67% 16.67% 16.67% 16.67% 16.67% 16.67%
0.93% 0.93% 0.23% 0.12% 0.93% 96.86%
0.00% 0.15% 0.15% 0.15% 0.00% 99.56%
0.61% 2.94% 0.23% 0.35% 0.49% 95.38%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 2.33% 0.00% 0.00% 97.67%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
2.33% 0.00% 0.00% 0.00% 0.00% 97.67%
2.33% 0.19% 0.00% 0.19% 0.00% 97.29%
1.16% 0.00% 0.00% 0.00% 0.00% 98.84%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 2.33% 0.00% 97.67%
0.00% 0.00% 31.82% 0.00% 0.00% 68.18%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(o) target adapter + guide loss (cs)

cy eu it pt ru cs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 2.33% 0.29% 0.00% 97.38%
2.33% 0.00% 0.58% 0.00% 0.00% 97.09%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.19% 0.19% 0.00% 0.00% 0.00% 99.61%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 2.91% 0.00% 97.09%
0.00% 0.00% 0.00% 3.49% 0.00% 96.51%
0.00% 0.58% 2.33% 0.00% 0.00% 97.09%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(p) meta-adapter + guide loss (cs)
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cy eu it pt ru

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

20.00% 20.00% 20.00% 20.00% 20.00%
8.83% 9.47% 56.74% 15.48% 9.47%
10.19% 12.38% 22.35% 31.18% 23.89%
9.96% 15.96% 20.54% 38.95% 14.60%
14.21% 15.53% 38.29% 14.67% 17.30%
7.34% 18.38% 21.70% 31.90% 20.67%
32.26% 13.20% 23.64% 20.39% 10.51%
17.05% 12.37% 16.79% 32.20% 21.59%
35.35% 18.43% 25.25% 6.57% 14.39%
20.01% 11.62% 12.50% 26.77% 29.10%
11.11% 60.04% 7.32% 12.94% 8.59%
16.79% 6.44% 29.92% 25.88% 20.96%
37.50% 4.17% 57.22% 0.00% 1.11%
7.22% 20.69% 69.86% 0.83% 1.39%
59.44% 3.06% 1.11% 34.45% 1.94%
6.55% 10.29% 22.54% 13.90% 46.72%
46.39% 41.67% 3.33% 2.22% 6.39%
80.28% 7.50% 0.83% 11.39% 0.00%

(q) w/o target adapter (ro)

cy eu it pt ru ro

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

8.23% 8.23% 8.23% 8.23% 8.23% 58.83%
6.14% 6.70% 24.11% 11.33% 6.70% 45.00%
9.84% 0.33% 9.26% 8.40% 31.07% 41.09%
1.68% 2.81% 12.90% 13.72% 6.11% 62.77%
7.47% 4.51% 13.14% 8.32% 9.39% 57.18%
6.74% 4.16% 12.68% 18.70% 10.63% 47.09%
31.04% 18.41% 18.42% 14.77% 9.15% 8.21%
3.54% 6.31% 2.40% 10.73% 3.66% 73.36%
1.77% 2.82% 8.84% 5.35% 19.36% 61.87%
12.88% 22.47% 11.11% 29.29% 14.65% 9.60%
6.69% 4.04% 1.01% 15.40% 3.16% 69.70%
9.72% 5.56% 0.13% 4.04% 1.64% 78.91%
36.39% 0.00% 0.00% 0.00% 0.00% 63.61%
0.00% 0.56% 0.28% 0.28% 2.22% 96.67%
0.00% 1.67% 0.00% 0.56% 3.06% 94.72%
1.94% 0.56% 38.61% 1.11% 1.39% 56.39%
6.39% 0.28% 0.00% 1.11% 0.56% 91.67%
0.00% 0.00% 36.67% 0.00% 0.00% 63.33%

(r) w/o guide loss (ro)

cy eu it pt ru ro

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

7.61% 7.61% 7.61% 7.61% 7.61% 61.96%
0.02% 0.02% 1.41% 1.64% 0.02% 96.87%
1.48% 0.11% 0.02% 0.17% 0.00% 98.22%
0.00% 0.38% 0.13% 0.91% 0.00% 98.59%
0.13% 0.00% 0.00% 0.00% 1.39% 98.48%
1.52% 0.00% 0.13% 0.00% 0.38% 97.98%
0.13% 0.13% 0.00% 1.52% 0.00% 98.23%
1.52% 0.38% 0.00% 0.25% 0.00% 97.85%
0.25% 0.00% 0.51% 0.25% 0.00% 98.99%
0.51% 0.76% 0.76% 1.89% 0.51% 95.58%
1.52% 0.13% 0.13% 0.00% 0.38% 97.85%
1.39% 0.00% 0.63% 2.27% 0.13% 95.58%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.28% 0.00% 0.00% 0.00% 0.00% 99.72%
0.00% 0.28% 0.00% 0.00% 0.00% 99.72%
0.00% 0.00% 0.00% 0.00% 0.83% 99.17%

(s) target adapter + guide loss (ro)

cy eu it pt ru ar

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
1.06% 1.06% 0.19% 0.33% 1.06% 96.30%
0.42% 0.67% 0.59% 0.49% 0.03% 97.80%
2.49% 3.28% 1.25% 1.01% 0.73% 91.24%
0.08% 0.21% 0.12% 0.21% 0.16% 99.22%
0.00% 0.08% 0.00% 0.00% 0.08% 99.84%
0.25% 0.25% 0.08% 0.00% 0.00% 99.43%
0.00% 0.08% 0.00% 0.08% 0.25% 99.59%
0.49% 0.44% 0.33% 0.31% 0.25% 98.18%
0.25% 0.16% 0.49% 0.49% 0.08% 98.52%
0.25% 2.21% 0.08% 0.25% 0.41% 96.80%
0.33% 0.16% 1.97% 0.08% 0.08% 97.37%
0.00% 0.00% 0.00% 58.60% 0.00% 41.40%
0.00% 0.00% 0.00% 0.19% 0.00% 99.81%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

(t) meta-adapter + guide loss (ro)

Figure 4.5.4: Attention matrices of five low-resource target languages. A row in
the figure denotes a language, whose four settings are: (1) without target adapter,
(2) with target adapter but no guide loss (γ = 0), (3) with target adapter and
guide loss, and (4) SimAdapter +. Column index indicates the Transformer layer
number, where 0th to 11th layers are encoders, 12th to 17th are decoders. Best
viewed in color and zoomed in.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, I propose a new framework, a strong multilingual backbone

LID-42, and two novel algorithms MetaAdapter and SimAdapter for cross-lingual

low-resource speech recognition. LID-42 is a super multilingual ASR model

based on CTC-attention Transformer trained on up to 5,000-hour labeled speech

data. MetaAdapter and SimAdapter are adapter-based transfer learning methods

for parameter-efficient adaptation. The proposed MetaAdapter implicitly learn

from source languages to obtain a proper initialization for any unseen languages.

On the other hand, the SimAdapter method explicitly leverages attention mech-

anism to learn the similarities between the source and target languages during

fine-tuning using the adapters. I also show that the two algorithms can be inte-

grated for better performance. Experiments on five low-resource languages from

Common Voice dataset demonstrate the superiority of LID-42 and the two algo-

rithms.
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5.2 Future Work

In the future, I plan to improve the framework and extend these algorithms

to other language families and further improve the training and inference speed

of the adaptation methods. I will also investigate larger datasets [59, 60], more

effective pre-training approaches [43,61,62] and adaptation methods [63,64] for

multilingual pre-training and cross-lingual adaptation to improve the ASR per-

formance on low-resource languages.
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International Conferences

• Wenxin Hou, Jindong Wang, Xu Tan, Tao Qin, Takahiro Shinozaki, ”Cross-

domain Speech Recognition with Unsupervised Character-level Distribu-

tion Matching”, in Proc. INTERSPEECH, Brno, Czech, August 2021.

• Wenxin Hou, Yidong Wang, Shengzhou Gao and Takahiro Shinozaki, ”Meta-

Adapter: Efficient Cross-Lingual Adaptation with Meta-Learning”, in Proc.

IEEE International Conference on Acoustics, Speech, and Signal Process-

ing (ICASSP), Toronto, Ontario, Canada, June 2021.

• Wenxin Hou, Yue Dong, Bairong Zhuang, Longfei Yang, Jiatong Shi and

Takahiro Shinozaki, ”Large-Scale End-to-End Multilingual Speech Recog-

nition and Language Identification with Multi-Task Learning”, in Proc. IN-

TERSPEECH, Shanghai, China, October 2020.

• Mingxin Zhang, Tomohiro Tanaka, Wenxin Hou, Shengzhou Gao and Takahiro

Shinozaki, ”Sound-Image Grounding Based Focusing Mechanism for Effi-

cient Automatic Spoken Language Acquisition”, in Proc. INTERSPEECH,

Shanghai, China, October 2020.

• Shengzhou Gao, Wenxin Hou, Tomohiro Tanaka and Takahiro Shinozaki,

”Spoken Language Acquisition Based on Reinforcement Learning and Word

Unit Segmentation”, in Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Barcelona, Spain, May 2020.

Domestic Conferences

• 森滉介, Wenxin Hou,篠崎隆宏, ”多言語モデルの転移学習による日
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本人英語音声認識,”言語処理学会第27回年次大会, E2-3, 2021-3,オ

ンライン開催.

• 篠崎 隆宏, 高 聖洲, ZHANG Mingxin, Hou Wenxin, 田中 智宏, ” 言

語獲得能力を備えた音声対話エージェントの検討,” 人工知能学

会，AIチャレンジ研究会，SIG-Challenge-057-13，2020-11, オンラ

イン開催.

• 篠崎隆宏,高聖洲, Hou Wenxin,田中智宏, ”連続音声からの教師な

し単語辞書学習に基づく言語獲得エージェント,”計測自動制御学

会システム・情報部門学術講演会 2020, GS2-4-4, 2020-11,オンラ

イン開催.

• 篠崎 隆宏, ZHANG Mingxin, 田中 智宏, Wenxin Hou, 高 聖洲, ”音声

画像グラウンディングに基づいた注意機構による効率的な音声言

語獲得,”計測自動制御学会システム・情報部門学術講演会 2020,

GS2-4-5, 2020-11,オンライン開催.

• 篠崎隆宏,高聖洲, ZHANG Mingxin, Hou Wenxin,田中智宏, ”相乗的

複合学習による効率的な音声言語獲得機構,”第89回言語・音声理

解と対話処理研究会, No11, 2020-9,オンライン開催.

• Shengzhou Gao, Wenxin Hou, Tomohiro Tanaka, Takahiro Shinozaki, ”

SPOKEN LANGUAGE ACQUISITION BASED ON REINFORCEMENT

LEARNING AND WORD UNIT SEGMENTATION,”日本音響学会2020年

秋季研究発表会講演論文集, 3-2-8, 2020-9,オンライン開催.

• Hou Wenxin, Dong Yue, ZHUANG BAIRONG,楊龍飛, Shi Jiatong, 篠

崎隆宏, ”超多言語事前学習による低資源音声認識の検討,”日本音響

学会2020年秋季研究発表会講演論文集, 2-P1-7, 2020-9,オンライン

開催.
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Open-Source Projects

• LID-42 Demo, https://github.com/Porridge144/sup-mlt-demo

• EasyEspnet, https://github.com/jindongwang/EasyEspnet

• DeepDA: Deep Domain Adaptation Toolkit, https://github.com/

jindongwang/transferlearning/tree/master/code/DeepDA
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